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Abstract 
 
The debate about which similarity measure one should use for the normalization in the 
case of Author Co-citation Analysis (ACA) is further complicated when one 
distinguishes between the symmetrical co-citation—or, more generally, co-occurrence—
matrix and the underlying asymmetrical citation—occurrence—matrix. In the Web 
environment, the approach of retrieving original citation data is often not feasible. In that 
case, one should use the Jaccard index, but preferentially after adding the number of total 
citations (occurrences) on the main diagonal. Unlike Salton’s cosine and the Pearson 
correlation, the Jaccard index abstracts from the shape of the distributions and focuses 
only on the intersection and the sum of the two sets. Since the correlations in the co-
occurrence matrix may partially be spurious, this property of the Jaccard index can be 
considered as an advantage in this case. 
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1. Introduction 
 
Ahlgren et al. (2003) argued that one should consider using Salton’s cosine instead of the 
Pearson correlation coefficient as a similarity measure in author co-citation analysis and 
showed the effects of this change on the basis of a dataset provided in Table 7 (at p. 555) 
of their paper. This has led to discussions in previous issues of this journal about the pros 
and cons of using the Pearson correlation or other measures (Ahlgren et al., 2004; 
Bensman, 2004; White, 2003, 2004; Leydesdorff, 2005). Leydesdorff and Vaughan 
(2006) used the same dataset for showing why one should use the (asymmetrical) citation 
instead of the (symmetrical) co-citation matrix as the basis for the normalization. They 
argued that not only the value, but also the sign of the correlation may change between 
two cited authors when using the Pearson correlation in the symmetrical versus the 
asymmetrical case. For example in the dataset under study, Ahlgren et al. (2003, at p. 
556) found a correlation of r = + 0.74 between “Schubert” and “Van Raan,” while 
Leydesdorff & Vaughan (at p. 1620) report r = – 0.131  (p < 0.05) using the underlying 
citation matrix.  
 
One can download a set of documents in which the authors under investigation are 
potentially (co-)cited in the library environment, but this approach of retrieving original 
citation data and then using Pearson’s r or Salton’s cosine to construct a similarity matrix 
is often not feasible in the web environment. In this environment, the researcher may only 
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have the index available and searches the database with a Boolean AND in order to 
construct a co-citation or, more generally, a co-occurrence matrix without first generating 
an occurrence matrix. Should one in such cases also normalize using the cosine or the 
Pearson correlation coefficient or, perhaps, use still another measure?  
 
I shall argue that in this case, one may prefer to use the Jaccard index (Jaccard, 1901). 
The Jaccard index was elaborated by Tanimoto (1957) for the non-binary case. Thus, one 
can distinguish between using the Jaccard index for the normalization of the binary 
citation matrix and the Tanimoto index in the case of the non-binary co-citation matrix. 
The results will be compared with using Salton’s cosine (Salton & McGill, 1983), the 
Pearson correlation, and the probabilistic activity index (Zitt et al., 2000) in the case of 
both the symmetrical co-citation and the asymmetrical citation matrix. 
 
The argument is illustrated with an analysis using the same data as Ahlgren et al. (2003). 
This dataset (provided in Table 1) is extremely structured: it contains exclusively positive 
correlations within both groups and negative correlations between the two groups. The 
two groups are thus completely separated in terms of the Pearson correlation coefficients. 
However, there are relations between individual authors in the two groups. An optimal 
representation should reflect both this complete separation in terms of correlations at the 
level of the set and the weak overlap generated by individual relations (Waltman & Van 
Eck, forthcoming; Leydesdorff, 2005). (A visualization of the co-citation matrix before 
normalization is provided as Figure 13 by Leydesdorff & Vaughan (2006, at p. 1625).)  
 
In summary, two problems have to be distinguished: the problem of normalization and 
the type of matrix to be normalized. In principle, one can normalize both symmetrical and 
asymmetrical matrices with the various measures. Ahlgren et al. (2003) provided 
arguments for using the cosine instead of the Pearson correlation coefficient, particularly 
if one aims at visualization of the structure like in the case of social network analysis or 
MDS. Bensman (2004) provided arguments why one might nevertheless prefer the 
Pearson correlation coefficient when the purpose of the study is a statistical (e.g., 
multivariate) analysis. The advantage of the cosine of being not a statistics, but a 
similarity measure then disappears. Formally, these two measures are equivalent with the 
exception that Pearson normalizes for the arithmetic mean, while the cosine doesn’t use 
this mean as a parameter (Jones & Furnas, 1997). The cosine normalizes for the 
geometrical mean. The question remains which normalization one should use when one 
has only co-occurrence data available.  
 
2. The Jaccard index 
 
In his original paper introducing co-citation analysis, Small (1973, at p. 269) suggested 
the following solution to the normalization problem in footnote 6: 
 

We can also give a more formal definition of co-citation in terms of set theory 
notation. If A is the set of papers which cites document a and B is the set which 
cites b, then A∩B, that is n(A∩B), is the co-citation frequency. The relative co-
citation frequency could be defined as n(A∩B) ÷ n(AU B). 
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This proposal for the normalization corresponds with using the Jaccard index or its 
extension (for the non-binary case) into the Tanimoto index. The index is defined for a 
pair of vectors, Xm and Xn, as the size of the intersection divided by the size of the union 
of the sample sets or in numerical terms: 
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where Xij = XiXj. The value of Smn ranges from 0 to 1 (Lipkes, 1999; cf. Salton & McGill, 
1983, at pp. 203f.). 
 
In a number of studies (e.g., Egghe & Rousseau, 1990; Glänzel, 2001; Hamers et al., 
1989; Leydesdorff & Zaal, 1988; Luukkonen et al., 1993; Michelet, 1988; Wagner & 
Leydesdorff, 2005), the Jaccard index and the cosine have systematically been compared 
for co-occurrence data, but this debate has remained inconclusive. Using co-authorship 
data, for example, Luukkonen et al. (1993, at p. 23) argued that “the Jaccard measure is 
preferable to Salton’s measure since the latter underestimatess the collaboration of 
smaller countries with larger countries; […].” Wagner & Leydesdorff (2005, at p. 208) 
argued that “whereas the Jaccard index focuses on strong links in segments of the 
database the Salton Index organizes the relations geometrically so that they can be 
visualized as structural patterns of relations.”  
 
In many cases, one can expect the Jaccard and the cosine measures to be monotonic to 
each other (Schneider & Borlund, forthcoming). However, the cosine metric measures the 
similarity between two vectors (by using the angle between them), whereas the Jaccard 
index focuses only on the relative size of the intersection between the two sets when 
compared to their union. Furthermore, one can normalize differently using the 
margintotals in the asymmetrical occurrence or the symmetrical co-occurrence matrix. 
Luukkonen et al. (1993, at p. 18), for example, summed the co-occurrences in their set 
(of 30 countries) for obtaining the denominator, while Small’s (1973) definition of a 
relative co-citation frequency suggests to use the sum of the total number of occurrences 
as the denominator. White & Griffith (1981, at p. 165) also proposed using “total 
citations” as values for the main diagonal, but these authors decided not to use this 
normalization for empirical reasons.  
 
Table 1 illustrates the two options by providing the data for the set under study and 
adding the total number of citations as the main diagonal and the total number of co-
citations as margintotals. For example, using the non-binary margintotals for Schubert 
and Van Raan, respectively, the Tanimoto index is 5 / (139 + 132 – 5) = 0.019, while the 
Jaccard index based on the binary citations is 5 / (60 + 50 – 5) = 0.048. Important is that 
the co-occurrence matrix itself no longer informs us about the number of cited documents. 
The co-occurrence matrix contains less information than the occurrence matrix.1 
                                                 
1 Two symmetrical matrices can be derived from one asymmetrical matrix. Borgatti et al. (2002) formulate 
this (in the manual of UCINet) as follows: “Given an incidence matrix A where the rows represent actors 
and the columns events, then the matrix AA' gives the number of events in which actors simultaneously 
attended.  Hence AA' (i,j) is the number of events attended by both actor i and actor j.  The matrix A'A 
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However, the total number of citations can be added by the researcher on the main 
diagonal. One could also consider this value as the search result for the co-citation of 
“Schubert AND Schubert,” etc. 
 
Note that the value added on the main diagonal of the co-citation matrix corresponds to 
the margintotal of the asymmetrical matrix, that is, the total number of citations.  
Therefore, a normalization of the symmetrical matrix using these values on the main 
diagonal precisely corresponds with using the Jaccard normalization of the asymmetrical 
occurrence matrix. I shall from hereon distinguish between the two normalizations in 
terms of the symmetrical and the asymmetrical matrix, respectively. In the latter case, I 
use the values on the main diagonal and in the former the margintotals.  
 
Recall that the Jaccard index does not take the shape of the distributions in account, but 
only normalizes the intersection of two sets with reference to the sum of the two sets. In 
other words, the cell values are independently evaluated in relation to margintotals and 
not in relation to other cells in the respective rows and columns of the matrix. This 
insensitivity to the shape of the distributions can be considered as both an advantage and 
a disadvantage. In the case of the asymmetrical matrix, the Jaccard index does not exploit 
the full information contained in the matrix. This can be considered a disadvantage. Both 
the cosine and the Pearson correlation matrix fully exploit this information. However, in 
case of the symmetrical matrix one has already lost the information about the underlying 
distributions in the asymmetrical matrix. Import of the margintotals from the 
asymmetrical matrix as a value on the main diagonal then adds to the information 
contained in the symmetrical matrix.  
 
The Jaccard index has this focus on cell values instead of distributions in common with 
the probabilistic activity index (PAI) which is the preferred measure of Zitt et al. (2000). 
The PAI is the (traditional) ratio between observed and expected values in a contingency 
table based on probability calculus:  
 
 PAI  =  pij / (pi * pj) 

=  nij * Σi Σj nij / Σi nij * Σj nij 
 
Like the Jaccard and Tanimoto index this index can be applied on the lower 
triangles of symmetrical co-occurrence matrices while the Pearson coefficient and 
the cosine are based on full vectors and thus use the information contained in a 
symmetrical matrix twice (Hamers et al., 1989).2
 
                                                                                                                                                 
gives the number of events simultaneously attended by a pair of actors.  Hence A'A(i,j) is the number of 
actors who attended both event i and event j.” 
2 Leydesdorff (2005) discussed the advantages of using information measures for the precise calculation of 
distances using the same co-occurrence data. Information theory is also based on probability calculus (cf. 
Van Rijsbergen (1977). The information measure generates an asymmetrical matrix based on a symmetrical 
co-occurrence matrix because the distance from A to B can be different from the distance between B and A. 
The measure thus generates a directed graph, while the measures under discussion here generate undirected 
graphs. Directed graphs can be visualized using Waldo Tobler’s Flow Mapper, available at 
http://www.csiss.org/clearinghouse/FlowMapper/. 
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3. Results 
 
Table 2 provides the Spearman rank-order correlations among the lower triangles of 
the various similarity matrices under discussion. Spearman’s rho is used instead of 
Pearson’s r because objects in proximity matrices are based on dyadic relationships 
(Kenny et al., 2006); the assumption of independence required for parametric 
significance tests is violated (Schneider & Borlund, forthcoming).  
 
The perfect rank-order correlation (ρ = 1.00; p < 0.01) between the cosine matrix 
derived from the asymmetrical citation matrix, and the Jaccard index based on this 
same matrix supports the analytical conclusions above about the expected 
monotonicity between these two measures (Schneider & Borlund, forthcoming). 
However, there are some differences in the values which matter for the visualization. 
Figures 1 and 2 provide visualizations using these two matrices of similarity 
coefficients, respectively.  
 

 
Figure 1: Cosine normalized representation of the asymmetrical citation matrix 
(Pajek;3 Kamada & Kawai, 1989). 
 

                                                 
3 Pajek is a software package for social network analysis and visualization which is freely available for 
academic usage at http://vlado.fmf.uni-lj.si/pub/networks/pajek/ . 
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Figure 2: Jaccard-index-based representation of the co-citation matrix using total 
citations for the normalization (Pajek;3 Kamada & Kawai, 1989)) 
 
The cosine remains the best measure for the visualization of the vector space because this 
measure is defined in geometrical terms. Although the Spearman correlation of the 
cosine-normalized matrix with the Jaccard index of this same matrix is unity, Figure 2 
does not provide the fine-structure within the clusters to the same extent as Figure 1. 
Figure 3 shows that the Jaccard index covers a smaller range than the cosine (Hamers et 
al., 1989). The smaller variance (0.08 versus 0.21 for the cosine-based matrix) may 
further limit the dissolvent capacity of the measure in visualizations.  
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Figure 3: Relation between the Jaccard Index and Salton’s cosine in the case of the  
asymmetrical citation matrix (N = (24 * 23) / 2 = 276). 
  
In both cases, the analyst can emphasize the separation between the two groups by 
introducing a threshold. In the case of the Jaccard index the amount of detail in the 
relations between the two groups is then lower than in the case of the cosine-normalized 
matrix. For example, only the two co-citation relations between “Tijssen” and “Croft” 
pass a 0.05-threshold for the Jaccard index because both these authors have relatively low 
values on the main diagonal and therefore in the denominator of the equation, while 
several other co-citation relations (e.g., the relative intermediate positions of “Price” and 
“Van Raan”) remain visible in the case of the cosine normalization and a cosine equal to 
or larger than 0.05. 
 
The rank-order correlations of both these lower triangles with the Tanimoto index of the 
symmetrical matrix are also near unity (ρ = 0.998). All correlations with the probabilistic 
affinity index are slightly lower (ρ < 0.99). The correlations between using the Pearson 
correlation or the cosine on the asymmetrical and symmetrical matrices, respectively, are 
below 0.90. Despite the relatively small differences among the lower triangles, the 
visualizations are different. 
 
In summary, the cosine-normalized asymmetrical occurrence matrix provides us with the 
best visualization of the underlying structure. When one is not able to generate an 
occurrence matrix, the Jaccard index using the values of the total number of citations on 
the main diagonal for the normalization is the second best alternative. In Table 3, I report 
on the results of using the twelve scientometricians as a subset. The results confirm that 
the Jaccard index normalized this way leads to results very similar (ρ > 0.99; p < 0.01) to 
the cosine-normalized occurrence matrix.  
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Conclusions 
 
Leydesdorff & Vaughan (2006) have provided reasons for using the asymmetrical matrix 
underlying the co-occurrence matrix as a basis for multivariate analysis (e.g., MDS, 
clustering, factor analysis). For the purposes of visualization, the cosine is the preferred 
measure for the reasons given by Ahlgren et al. (2003), but for other statistical analyses 
one may prefer to normalize using the Pearson correlation coefficient (Bensman, 2004) or 
Euclidean distances (in the case of MDS).  
 
If the only option is to generate a co-occurrence matrix, as is often the case in 
webometric research, the Jaccard index is the best basis for the normalization because 
this measure does not take the distributions along the respective vectors into account. 
Like the Jaccard index, the PAI focuses only on the strength of the co-occurrence relation. 
If available, however, the frequencies of the occurrences which are conventionally placed 
on the main diagonal can be expected to improve the normalization. In the empirical 
examples, this Jaccard Index was as good a measure as the cosine-normalized citation 
matrices. Remember that the research question was which similarity measure to use when 
the occurrence matrix cannot be retrieved. 
 
Which of the two options for the normalization of the Jaccard index will be preferable in 
a given project depends on the research question and the availability of the data. However, 
one should be very cautious in using the symmetrical matrix as input to further statistical 
analysis because of the change of the size and potentially the sign of the correlation when 
multiplying the citation matrix with its transposed. Using the Jaccard index with the 
diagonal value based on the margintotals of the asymmetrical matrix circumvents this 
problem.  
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19 19 8 13 5 9 7 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 118 
Schubert 29 60 30 18 10 20 5 5 5 14 2 1 0 0 0 0 0 0 0 0 0 0 0 0 139 
Glanzel 19 30 53 16 10 22 9 14 9 11 5 3 0 0 0 0 0 0 0 0 0 0 0 0 148 
Moed 19 18 16 55 11 20 5 17 14 12 6 4 0 0 0 0 0 0 0 0 0 0 0 0 142 
Nederhof 8 10 10 11 31 12 8 13 7 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 89 
Narin 13 20 22 20 12 64 11 20 21 20 11 9 0 0 1 1 0 0 1 1 0 0 0 0 183 
Tijssen 5 5 9 5 8 11 22 13 10 5 6 1 0 1 2 1 0 0 0 1 0 0 0 0 83 
VanRaan 9 5 14 17 13 20 13 50 13 12 11 6 0 1 2 1 0 0 0 1 0 0 0 0 138 
Leydesdorff 7 5 9 14 7 21 10 13 46 18 14 9 1 0 1 1 0 0 0 2 0 0 0 0 132 
Price 7 14 11 12 4 20 5 12 18 54 10 9 1 1 1 1 0 0 2 0 1 0 1 2 132 
Callon 2 2 5 6 4 11 6 12 14 10 26 4 0 0 1 1 0 0 0 1 0 0 0 0 79 
Cronin 0 1 3 4 2 9 1 6 9 9 4 24 1 0 0 0 0 0 0 1 0 1 1 1 53 
Cooper 0 0 0 0 0 0 0 0 1 1 0 1 30 14 5 11 5 8 6 2 0 0 1 1 56 
Vanrijsbergen 0 0 0 0 0 0 1 1 0 1 0 0 14 30 7 15 5 13 5 3 1 0 1 1 68 
Croft 0 0 0 0 0 1 2 2 1 1 1 0 5 7 18 9 6 7 8 6 2 1 2 2 63 
Robertson 0 0 0 0 0 1 1 1 1 1 1 1 11 15 9 36 7 12 11 10 8 5 4 4 103 
Blair 0 0 0 0 0 0 0 0 0 0 0 0 5 5 6 7 18 9 4 2 2 2 0 0 42 
Harman 0 0 0 0 0 0 0 0 0 0 0 0 8 13 7 12 9 31 9 5 5 3 1 1 73 
Belkin 0 0 0 0 0 1 0 0 0 2 0 0 6 5 8 11 4 9 36 9 9 10 14 10 98 
Spink 0 0 0 0 0 1 1 1 2 0 1 1 2 3 6 10 2 5 9 21 11 7 5 4 71 
Fidel 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2 8 2 5 9 11 23 11 9 6 65 
Marchionini 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 5 2 3 10 7 11 24 10 5 55 
Kuhlthau 0 0 0 0 0 0 0 0 0 1 0 1 1 1 2 4 0 1 14 5 9 10 26 14 63 
Dervin 0 0 0 0 0 0 0 0 0 2 0 1 1 1 2 4 0 1 10 4 6 5 14 20 51
  118 139 148 142 89 183 83 139 132 132 78 54 56 68 63 102 42 73 98 71 65 55 63 51 2,244

 
 
Table 1: Author co-citation matrix of 24 information scientists used (Table 7 of Ahlgren et al., 2003, at p. 555; main diagonal values 
added). 
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Pearson 
asymm. 

cosine 
asymm. 

Jaccard 
asymm. 

Pearson 
symm. 

cosine 
symm. 

Tanimoto 
symm. 

PAI 
symm. 

Correlation Coefficient 1.000 .910(**) .909(**) .828(**) .818(**) .904(**) .910(**)
Sig. (2-tailed) . .000 .000 .000 .000 .000 .000

Pearson 
asymmetrical 

N 276 276 276 276 276 276 276
Correlation Coefficient .910(**) 1.000 1.000(**) .834(**) .857(**) .998(**) .983(**)
Sig. (2-tailed) .000 . .000 .000 .000 .000 .000

Cosine 
asymmetrical 

N 276 276 276 276 276 276 276
Correlation Coefficient .909(**) 1.000(**) 1.000 .834(**) .856(**) .998(**) .983(**)
Sig. (2-tailed) .000 .000 . .000 .000 .000 .000

Jaccard 
asymmetrical 

N 276 276 276 276 276 276 276
Correlation Coefficient .828(**) .834(**) .834(**) 1.000 .818(**) .837(**) .823(**)
Sig. (2-tailed) .000 .000 .000 . .000 .000 .000

Pearson 
symmetrical 

N 276 276 276 276 276 276 276
Correlation Coefficient .818(**) .857(**) .856(**) .818(**) 1.000 .856(**) .848(**)
Sig. (2-tailed) .000 .000 .000 .000 . .000 .000

Cosine 
symmetrical 

N 276 276 276 276 276 276 276
Correlation Coefficient .904(**) .998(**) .998(**) .837(**) .856(**) 1.000 .984(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 . .000

Tanimoto 
symmetrical 

N 276 276 276 276 276 276 276
Correlation Coefficient .910(**) .983(**) .983(**) .823(**) .848(**) .984(**) 1.000
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .

Spearman's rho 

PAI 
symmetrical 

N 276 276 276 276 276 276 276
**  Correlation is significant at the 0.01 level (2-tailed). 
 
Table 2: Spearman correlations among the lower triangles of similarity matrices using different criteria, and both asymmetrical 
citation and symmetrical co-citation data for 24 authors in both scientometrics and information retrieval.  
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Pearson 
asymm. 

cosine 
asymm. 

Jaccard 
asymm. 

Pearson 
symm. 

cosine 
symm. 

Tanimoto 
symm. 

PAI 
symm. 

Correlation Coefficient 1.000 .862(**) .838(**) -.042 .253(*) .766(**) .912(**)
Sig. (2-tailed) . .000 .000 .736 .040 .000 .000

Pearson 
asymmetrical 

N 66 66 66 66 66 66 66
Correlation Coefficient .862(**) 1.000 .995(**) -.268(*) .114 .966(**) .857(**)
Sig. (2-tailed) .000 . .000 .029 .360 .000 .000

Cosine 
asymmetrical 

N 66 66 66 66 66 66 66
Correlation Coefficient .838(**) .995(**) 1.000 -.273(*) .109 .974(**) .842(**)
Sig. (2-tailed) .000 .000 . .027 .382 .000 .000

Jaccard 
asymmetrical 

N 66 66 66 66 66 66 66
Correlation Coefficient -.042 -.268(*) -.273(*) 1.000 .682(**) -.256(*) -.005
Sig. (2-tailed) .736 .029 .027 . .000 .038 .966

Pearson 
symmetrical 

N 66 66 66 66 66 66 66
Correlation Coefficient .253(*) .114 .109 .682(**) 1.000 .069 .190
Sig. (2-tailed) .040 .360 .382 .000 . .582 .127

Cosine 
symmetrical 

N 66 66 66 66 66 66 66
Correlation Coefficient .766(**) .966(**) .974(**) -.256(*) .069 1.000 .837(**)
Sig. (2-tailed) .000 .000 .000 .038 .582 . .000

Tanimoto 
symmetrical 

N 66 66 66 66 66 66 66
Correlation Coefficient .912(**) .857(**) .842(**) -.005 .190 .837(**) 1.000
Sig. (2-tailed) .000 .000 .000 .966 .127 .000 .

Spearman's rho 

PAI 
symmetrical 

N 66 66 66 66 66 66 66
**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 
 
Table 3: Spearman correlations among the lower triangles of similarity matrices using different criteria, and both asymmetrical 
citation and symmetrical co-citation data for the subgroup of twelve scientometricians.  
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