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The technique of cellular automata can be used for the simulation
of social phenomena by considering the cells as the actors and the
resulting pattern on the screen as the social system of their interac-
tions. Actor behaviour is then specified at the cell level (i.e. “geno-
typically”), while the operation of the social system can be observed
“phenotypically”. Thus, one is able to infer from the specification
of individual behaviour to the dynamics of the social system. Addi-
tionally, subroutines can be attributed to different cells. For
example, individual cells can be instructed to reflect on their environ-
mental conditions and to act accordingly, by providing them with “if
then” statements in addition to their regular behaviour (“do while”).
Thus, the effects of social structure upon action ¢an also be investi-
gated. I argue that this methodology provides us with an instrument
with which to relate social theory concerning the interplay
between agency and structure to the formal analysis of social
structure in terms of networks.

Theoretical relevance

The sociologist is often caught in a methodological dilemma: one is
able to observe the behaviour of actors, but any reconstruction of
the social system provides one with a hypothesis among a range
of other possible hypotheses (Hinton et al., 1986). While human
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actions and interactions can be directly observed, the resulting social
systems remain constructs which should not be reified. The socio-
logist has to infer the operation of the social system on the basis of
a local reconstruction (see, e.g., Knorr-Cetina, 1981).

How might one be able to predict the operation of social patterns
if the latter are so inherently uncertain? Can one ever use a hypothe-
tical operation to provide a convincing explanation of observable
behaviour? The social system is additionally complex because
human actors are sometimes able to change the situation reflexively
(cf. Henschel, 1990). But even without this complication, the opera-
tion of a hypothetical system has to remain a second-order hypo-
thesis. Our imagination is easily confused when we wish to specify
the possible operations of “virtual” systems (Giddens, 1979).

By using computer simulations, one is able to compare expecta-
tions with respect to hypothetical systems in terms of probabilities.
Thus, an algorithmic approach can help one to study social structure
in terms of ranges of possible operations. The ensemble of logical
possibilities spans a phase space; substantive specifications restrict
the numnber of possible transitions. Moreover, the range of possible
interactions at each moment in time is conditioned by the previous
state(s) of the hypothesized super-system (cf. Pearl, 1988). Previous
states of the super-system can be specified by studying its assurned
“macro”-history (cf. Giddens, 1984).

This model of social systems can be visualized by extending Burt’s
(1982) model of social action with a time axis as exhibited in Figure
1: structure is decomposed and recomposed by actions; actions are
partly conditioned and partly determined by structure at a previous
moment (Leydesdorff, 1991; Kaufer and Carley, 1993).! Thus, the
social system, which itself remains “virtual” during the operation
(Giddens, 1979), exhibits continuity and change: change as a result
of various interactions, and continuity with reference to its previous
state.

A traditional approach to this problem would require the specifi-
cation of a system of partial difference equations. However, such a
system or its continuous equivalent — a system of partial differen-
tial equations — is usually difficult to solve algebraically., The
cellular automaton provides us with a methodology to simulate this
problem. In this study, the social system is defined by considering
the 25 lines and the 80 columns of a computer screen as 25 X 80 =
2000 actors who change their behaviour (in terms of their colour
on the screen) in relation to the colours of their neighbours and
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FIGURE 1
Dynamic extension of Burt’s (1982) model of structure/action contingency relations
Source: Burt (1982: 9) and Leydesdorff (1991: 341).

according to relatively simple rules. The behavioural subroutines
followed by the actors lead to overall patterns at the level of the
observable super-system that can be exhibited on the screen. Among
other things, the effect of providing the actors with some reflexive
capacity will be discussed. In a final section, I return to the question
of how this methodology provides us with an instrument to relate
social theory with social network analysis.

Cellular automata as a method

With the advent of the computer, the cellular automaton has
become increasingly popular in simulation studies. The technique
was introduced by Von Neumann and his co-workers when they
were searching for the specification of self-reproducing automata
(Ulam, 1962; Von Neumann, 1966). Ever since, it has been well
established in the natural sciences (e.g. Wolfram, 1983, 1984a,
1984b) and in biology (e.g. Hogeweg, 1988).

Biologists have used cellular automata for studying population
dynamics both in “natural” evolution and in “artificial life” (e.g.
Langton, 1989; Langton et al., 1992). Well-known computer games
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such as LIFE allow the user to watch the simulation of evolutionary
processes (cf. Kauffman, 1991). The underlying models of “artificial
life” have a format similar to those of connectionist models used in
neural network research (e.g. Rumelhart et al., 1986; Pearl, 1988):
the analyst specifies the micro-operations of the system at the
“genotypical” level, and then evaluates the macro-outcome at the
“phenotypical” level, while the in-between process is specified only
in terms of possible structures and procedures.

Dewdney (1988) reported on the use of a cellular automaton
model for studying chemical processes by Gerhardt and Schuster
(e.g. 1989). These authors called their model “a hodgepodge
machine”, since it allowed them to simulate classes of cellular auto-
mata by varying the values of the parameters in the machinery. In
this study, I use this hodgepodge model for the simulation, since it
allows me to vary the behaviour of individual cells both in terms of
individual routines and in terms of interaction parameters.

In the social sciences, the use of the computer for simulation pur-
poses is now widely accepted (cf. Forrester, 1971; Hanneman,
1988). Sophisticated simulation packages (e.g. STELLA and
DYNAMO) are available which allow for the deconstruction of
complex systems into subroutines. However, the idea of construc-
ting “social realities” by simulating a considerable number of lower-
order (“actor”) subroutines concurrently has seldom been applied to
sociological problems (Leydesdorff, 1993).

Recently, a number of authors have drawn attention to the use of
cellular automata for studying the diffusion of technologies in dif-
ferent geographical areas (e.g. Bhargava et al., 1993; Bhargava and
Mukheriee, 1994). Zuyderhoudt (1990) has used a hodgepodge
machine for studying the development of patterns in organizations.
Others have proposed the use of cellular automata for studying
structure/action contingency relations (e.g. Grasman, 1994; Parisi,
1994), but these studies did not yet contain simulation results.

At the theoretical level, Luhmann (1984) hypothesized that social
systems be considered as networks of communication which are
added to the actors at the nodes. These systems can be modelled as
neural networks (cf. Leydesdorff, 1992a). However, Luhmann also
emphasized that the system of reference — and thus the substance
of communication — in a social system is different from the sub-
stance of a psychological system. Therefore, it remains metaphori-
cal to study society as if it were a neural net. The cellular automaton
provides us with a more adequate model for studying social systems:
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the cells are allowed to behave (partially) independently and the
hodgepodge model enables us to vary both the behavioural and the
interaction parameters.

The model

Our model is based on the hodgepodge as described by Dewdney
(1988) and Zuyderhoudt (1990 and personal communication). As
noted, we use a standard computer screen with 80 columns and 25
rows, and thus 2000 cells. Since one can provide each cell with its
own programme, the model allows for the simulation of a social net-
work of 2000 actors who run their own (sub)routines. For the pur-
pose of making our argument, such a simple model is sufficiently
complex. (Note that one could define the hodgepodge at the lower
level of the pixels on a computer screen; then one would have, in the
case of a standard VGA screen, 640 times 480 pixels, i.e. >300,000
units. Furthermore, the relations between cells and pixels can pro-
vide us with a model for nested structures in an even more complex
design.)

In the simplest case, each cell is instructed to compute its value in
the next round in relation to its so-called Von Neumann neighbour-
hood, consisting of the four cells that share the cell’s edges. For
example, it may take the average of this neighbourhood. Addi-
tionally, a parameter D is defined with which all cell values are
increased in each iteration. When a cell exceeds the value of 100, it
“falls back” to the value of 1 again. Or, in a more formalized
terminology:

NEW VALUE = Int [D + {Z(OLD VALUES neighbouring
cells)/4}]
If NEW VALUE > 100, then NEW VALUE = 1

In addition, one can vary the relative weights of the four neigh-
bouring cells so that the general formula will be:?

Value,,, = Int{D + (Value,,""/a) + (Value,, /)
+ (Value,,®/c) + (Value,,™"°"/d) }
If Value,, > 100, then Value,,, = 1

Onthescreen, values of cells are related to screen colours for each 10.
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Furthermore, the left edge of the screen is linked to the right edge,
and the bottom edge to the top, in order to prevent complex boun-
dary distortions. The resulting screens are saved in sets of 235 screens,
which can later be exhibited as in a film. (The two programs are
listed in the Appendix.)

The simulations

The simulations begin with a disturbance by a single action in the
middle of the screen. I have arbitrarily chosen a value of 75 for this
seed cell in all examples which are discussed below. Obviously, if D
is equal to 100 and a, b, ¢ and d are all equal to 4 — so that an
average is taken of the Von Neumann neighbourhood — the dis-
turbance (“infection”) disappears in the next iteration, since all the
cell values then are set back to 1. In other words: the “infection” does
not “survive,” or one might also say that “it has been selected away”
by the operation of the emerging super-system. Thus, playing with
the value of D one has a mechanism for selection, and for periodi-
city, since this parameter also determines the maximum number of
iterations that an infected cell can “survive”.

For example, if we set D at the value of 34, the initial distortion
(of 75) will be selected away in the third iteration when all cells will
simultaneously reach a value larger than 100. (At this stage, some
infected cells have reached the threshold for the second time.) The
algorithm thus synchronizes the disappearance of the infection. If
we subsequently lower D to 33, we obtain screens with an overall
periodicity of 3. These screens will be symmetrical in the vertical and
horizontal direction, since we have not yet differentiated in value
between the parameters a, b, ¢ and d. If we increase the influence
of each of the neighbouring cells by a factor of 2 (setting a, b, ¢ and
d equal to 2 instead of 4) the system dies out even with D = 33.
Changes in parameter values lead to different periodicities and
patterns.

By experimenting with these parameters, a recognizable stable
pattern can be found, for example, at the values D =31, a =1,

= 3, ¢ = 2, d = 4. This pattern can be maintained for more than
1000 screens. (Figures 2a and 2b exhibit the 300th and the 500th
screen respectively.) At each moment, the pattern collapses in some
places, but is restored at others. The pattern also moves over the



Leydesdorff Théorie et méthodes 419

screen, but an average observer is not able to determine the periodi-
city of this movement by visual inspection.

A more precise study of the resulting periodicity at the level of the
screens leads to the graph in Figure 3. In this picture the difference
between the distribution of the cell values of each screen (between
screens 450 and 500) and its 50 precursors is plotted in terms of bits
of information as a measure of the difference (Theil, 1972;
Leydesdorff, 1991). Thus, screen 451 is compared with screens 401
to 450. The resulting difference from screen 401 is indicated as a
value at “—50" on the x-axis, while the comparison with screen 402
is plotted at the value of “—49". This procedure is repeated for 50
consecutive screens (451 to 500) so that an average with an error-bar
can be exhibited.

The graph in Figure 3 shows periodicities of 8 screens. The peri-
odicity of 8 fades away after approximately 40 screens. Note that a
periodicity of 8 cannot usually be distinguished by a human observer
visually.

The addition of a conservative trait to the cells’
subroutines

We experimented by providing cells with the instruction to keep
their value if the pattern surrounding each cell was sufficiently
stable in comparison to the previous screen. An analyst can
appreciate this mechanism as a kind of “reflexive conservatism”, i.e.
the individual actors are allowed to keep their previous value if an
update would bring them “out of line” with their neighbours.

Let us apply this reasoning to the interactive pattern shown in
Figure 2. We instructed the cells that if the pattern of the following
8 cells in a row “M ” (corresponding to the numerical values:
59, 51, 33, 33, 1, 1, 1, 1) was maintained in 7 of them, the one
remaining cell should adjust to the pattern and keep its value from
the previous iteration.® Thus, this subroutine favours the conserva-
tion of the indicated pattern at the screen level by running an addi-
tional check as an “if then” statement in the subroutine.

Counter-intuitively, the result is a discontinuity in the mainte-
nance of the noted pattern. Figure 4 exhibits the scrambling of the
picture on the screen after 500 iterations. This figure can be com-
pared with the screen exhibited in Figure 2b above, which was the
result of a similar simulation without this additional subroutine.
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(b) Screen 500

FIGURE 2

The explanation is that the reflexive correction at the cell level dis-
turbs the maintenance of the pattern at the level of the super-system.
This conclusion can be illustrated by using the graph in Figure 5.
This picture is superimposed on Figure 3 in order to facilitate the
comparison. It shows that the periodicity is dampened much more
in this case than in the previous one. Thus, reflexive capacity at the
cell level disturbs not only the pattern but also the dynamics of the
super-system upon which it counter-acts.
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Average expected information values among screens after 500 screens

This conclusion may come as no surprise to the theoretically
informed sociologist. But it remains noteworthy that these
theoretical insights can be demonstrated with these relatively simple
simulations. Complex behaviour can be the result of recursive
interactions between relatively simple rules (see, e.g., May, 1976;
Lewin, 1992). Additionally, the simulation results suggest that
periodicities of a higher order than is intuitively appreciable can be
expected to reign in a social system. While Giddens (1979) argued
that social structure contained a “duality” in its operation, this sim-
ple system, for example, exhibited already an “octality”.

Variation in the interactive parameters

The macro-system (which is made visible on the screen) is highly sen-
sitive to variation in the different parameters. As noted, a change
in parameter choice may easily lead to the extinction of the original
“infection” so that the macro-system vanishes. In other words, the
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definition of the systern in terms of parameters and routines con-
stitutes a phase space which can be investigated in terms of its pro-
perties (e.g. Kampmann et al., 1994). I return to these more abstract
considerations in the next section, but let me first discuss one more
example of an important social phenomenon, i.e. morphogenesis as
a result of (in this case, social) interaction,

Figure 6 exhibits various stages of a process of morphogenesis
produced by a run with parameter values D =31, a=1, b =1,
¢ = 2and d = 2. (In other words, the communication is spreading
horizontally twice as fast as vertically.) Figure 6a exhibits the unit
which emerges after a number of iterations and Figure 6b exhibits
the generation of a mutant which is formed between these two
“parent” figures. This mutant is selected away in the next iteration
(Figure 6¢).

The creation of the mutant between each couple, however, can
have an effect on another unit when a density of the more stable
units on the screen has been reached (Figure 6d). At this point, in
a few iterations a network pattern emerges among the hitherto loose
units. Shortly thereafter, all units have become part of this network
(Figure 6¢), and in a next stage, the super-system begins to grow
according to a completely different pattern (Figure 6f). Note that
this can be considered as the morphogenesis at the level of the
higher-order system (cf. Maruyama, 1963): while the mutant itself
was not stable in the original configuration, at a certain stage its
generation appears conditional on the emergence of a pattern at a
next higher level. Thereafter, the development pattern of the super-
system changes. If we pursue the metaphor of considering the super-
system on screen as a representation of the social system, this
mechanism explains why social systems may exhibit reorganizations
without causes that can be identified in terms of actor behaviour.
Not only is structure latent for action (Lazarsfeld and Henry, 1968;
Burt, 1982), but action can also be latent for structural develop-
ments at the level of the social system.

Let me finish this discussion of simulation results with Figure 7.
While the series of Figure 6 may have given the impression that the
network in a cellular automaton is locally constructed, Figure 7
(which is based on a run with parameters D =28, a =1, b =3,
¢ = 2 and d = 4) shows that the effects of disturbance by infection
are not necessarily local. The existence of a single infection may
affect the whole system, as is manifested in each third screen of this
run: all units above the infection take a different colour from all
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(a) The original unit

(b) The formation of a mutant

FIGURE 6

Leydesdorff
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(e) The new structure has emerged
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() A new pattern of development has been developed (screen 186)

FIGURE 6 (contd)
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units vertically below it, and all units to the left and to the right of
the infection are again differently affected. Thus, the super-system
is immediately — i.e. at the third screen — globally affected.

In summary, these results teach us that the locality of an action
should never be taken at its face value. Any action c¢an have a dif-
ferent impact on all other systems involved,

Patterns of interaction among discrete sysiems

Obviously, the emergence of the complex “order out of chaos” on
the screen is a result of the interaction among relatively simple com-
putational subroutines. How can one understand these phenomena?

By using the specified algorithm, waves of disturbance are sent
through the system in the four directions of a Von Neumann envi-
ronment. By varying the parameters, one changes frequencies and
amplitudes of the waves in the various directions. Thus, the out-
come can be considered as an interaction among frequencies (cf.
Smolensky, 1986). Remember from physics that an interaction
among continuous frequencies can sometimes be stabilized on an
oscilloscope as a so-called Lissajous figure. Lissajous figures may
have all kinds of shapes and periodicities.

In other words, what we have actually produced in the above
simulations are discrete and dissipative equivalents of Lissajous
figures. Figure 8 illustrates the point. It shows the frequency distri-
butions of the cell values for screens 201 to 300 and screens 401 to
500, respectively. The bars inform us that discrete values are
reproduced by this interaction, e.g. at the values of 1, 33, 51 and 59.
Indeed, these were also the values of the string that we assessed
previously for its persistence.* Given other parameters of the
system, other values would become pronounced. However, the
figure informs us that the pattern slowly degenerates over time,

Lissajous figures are electronically driven by fixed oscillations,
and therefore they can be stabilized as resonances. The patterns
which have been discussed above, however, are the results of semi-
resonances among discrete frequencies: these systems vibrate in a
non-equilibrium state and the quotient of the interacting frequencies
is normally not an integer. Thus, the {requencies can be considered
as “failing” to resonate. The visible stabilization of a pattern is the
result of a specific semi-resonance state, which can be temporarily
maintained despite the absence of equilibrium. A resonance would
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(a) The infection (screen 2)

(b) The infection has a global effect (screen 3)

FIGURE 7
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Frequency distributions of cell values

completely filter the noise, but since the system is only in a semi-
resonance, its dynamics are suboptimal. Consequently, this system
is not able to fully recover its pattern and therefore the semi-
resonance is expected gradually to deteriorate (as was shown above).

As early as 1969, Herbert Simon argued convincingly that evolu-
tionarily complex systems are nearly decomposable, and therefore
in a suboptimal state. The interaction terms between the composing
frequencies are structural, and the virtual dimensions of the system
cannot completely be orthogonal (¢f. Simon, 1973). In other words,
evolutionarily complex systems manifest the suboptimal specifica-
tion that has been achieved historically. A reflexive analyst can use
the observable phenomena to develop a theoretical reconstruction in
terms of composing dynamics. The subsequent translation of these
theoretical specifications into algorithmic code allows us to explore
the phase space of other possible recombinations beyond the pheno-
mena which have historically occurred.

Theoretical specifications, however, remain hypotheses (Popper,
1934/1959). Formalized into computer code (for example, as condi-
tional statements that operate as selectors on the variation) the
specifications span a phase space of possible variations The specifi-
cations limit the number of possible combinations.’ By virtue of
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the simulation the analyst can tinker with various specifications and
observable effects. Using the technique of cellular automata, we
have shown that in this way a research strategy can be developed for
studying a social system despite its “virtual” existence.

This rescarch strategy can be recapitulated as follows. First, a
complex phenomenon has to be deconstructed in terms of its pre-
sumed underlying (“genotypical”) mechanisms. Second, these speci-
fications are translated into a computer model. Third, one is able to
explore the structural characteristics of the macro-system using
simulations. Fourth, the appreciation of the “phenotypical” behavi-
our of the model (i.e. the simulation results) can be used recursively
to improve the model gradually with reference to insights in the
weight and the probability of the theoretically specifiable sub-
dynamics.

Theoretical implications

Theoretical interpretation is needed both at the “genotypical” and at
the “phenotypical” level. The two levels of theorizing refer to dif-
ferent systems, and thus one expects them to behave substantively
differently (cf. Luhmann, 1984). Since the super-system remains
emergent from the perspective of the lower-level system, discursive
reflections on the behaviour of lower-level units are not sufficient
for the specification of the higher-order system. One has to distin-
guish between the hypothesized subcybernetics (at the lower level)
and their interactions (at a next higher level): both the aggregation
of actions and their interactions play a role in composing the com-
plex result. Consequently, theoretical interpretations are expected
to vary with the focus chosen for the analysis (e.g. Hinton et al.,
1986; Shinn, 1987; Haraway, 1988).

Note the epistemological consequences for the sociological ana-
lysis: the geometrical metaphors provide us with partial perspectives.
But these partial perspectives no longer have to remain juxtaposed;
they can be nested as subroutines, “genotypically” highlighting dif-
ferent aspects and different stages of the system. Additionally, the
algorithmic model provides us with the possibility to relate the
“phenotypically” visible results of the simulation on the screen
unambiguously to changes in the values of (sets of) parameters at
each moment (cf. Langton, 1989). In principle, improvements in
theoretical specifications can therefore be assessed algorithmically
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in terms of their consequences. In the longer run, one may even be
able to compare the differences in possible perspectives in terms of
the percentages of dynamic variation (i.e. probabilistic entropy) that
can be explained (cf. Swenson, 1989; Leydesdorff, 1995).

While the theoretical specifications can be improved at each
moment in time, they remain by definition “situated” and time-
stamped. Additionally, evolution theory enables us to specify a
dynamic expectation with respect to the global direction of the sys-
tem’s development. In general, two mechanisms drive the further
development of the “nearly steady” state of the super-system along
the time axis. On the one hand, the semi-resonances partly filter the
noise. On the other hand, the system is left free to develop according
to its structural parameters, and therefore it drifts. More
specifically, the complex dynamic system tends to drift towards a
critical state (Swenson, 1989; cf. Leydesdorff, 1994). In the critical
state each disturbance may create an avalanche of further distur-
bances (Bak and Chen, 1991). However, more often than not,
systems which have hitherto “survived” will be sufficiently buffered
by semi-resonances so that the previous patterns are restored. The
nearly differentiated systems are expected to be reproduced after the
interaction most of the time.

If a system is locked into a semi-resonance — and thus tempora-
rily stabilized — the frequencies of the interaction are expected to
be nearly discrete (see Figure 8), i.e. characteristic for the structure
and functional for its further development as an evolutionary
system (Simon, 1973; cf. Arthur, 1989). A fully differentiated
system would have orthogonal axes, but then it would risk disinte-
gration. The more a dissipative system approaches this potentially
resonating state, however, the better it will be able to use its
resources (e.g. energy) for its further development (cf. Freese, 1988;
Swenson, 1989; Lee, 1994). Thus, the system drives itself toward a
critical state.

Structural constraints disturb this movement towards equilibrium
(cf. Schumpeter, 1939), while local disturbances tend to enforce the
dynamics of the system in the sense of providing it with opportunities
to change its developmental pattern (Allen, 1994). As noted, a theo-
retical appreciation of the phenotypical manifestations remains
needed for the attribution of functions to structural constraints and
observable differentiations. But in contrast to Parsons’s model of
structural-functionalism, the functions of a model of operations
may have to be specified in terms of interactions at the network
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level; one does not expect that the functions are fully decomposable
in terms of actions over any stretch of time (cf. Leydesdorff, 1993).
The recursive and interaction terms at the network level generate
what Giddens (1979) has called the “unintended consequences” of
human actions. The specification of these unintended conse-
quences, and vice versa of the ways in which action is “conditioned
and enabled” by “virtual structure”, requires a probabilistic appara-
tus that can be used for the systematic exploration of the various
options of semi-resonances in the phase space spanned by the model
specifications. Consequently, the appreciation of the macro-level
system can no longer be firmly founded in a micro-level understand-
ing; the systems are expected to feed back on each other. In general,
any attempt discursively to reduce the one level of theoretical speci-
fication to the other unnecessarily sacrifices explanatory power.

Relevance to sociological research

As noted, the cellular automaton is primarily a methodological tool:
it enables us to simulate developments at the network level while
formal network analysis has focused on the study of networks at
specific moments in time. In social theory, however, one is inter-
ested in explaining why the system has changed (e.g. Burt, 1982;
cf. Leydesdorff, 1993). In other words, formal network analysis
provides us with insights into the multivariate structure of a social
system at different moments in time, while social theory tends to
focus on issues of change and continuity in these structures in terms
of recurrent patterns of behaviour.

The cellular automaton enables us to combine these two perspec-
tives. It goes beyond the framework of this paper to provide the
reader with empirical examples (cf. Leydesdorff, 1992b and 1995),
but the methodological advancement over (formal) network analysis
can now be specified. First, social theories provide us with hypo-
theses about the mechanisms of change in social systems. The for-
mulation of this specification in terms of behavioural routines (“do
while”) and interactive triggers (“if then”) at the cellular level allows
for the mathematical specification of a probability distribution of
possible states of the network in a next stage. These expectations
vary with the theoretical specifications that go into the construction
of the model. Subsequently, one is able to find confirmation for the
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various theoretical insights by measurement of the relevant
networks.

Depending on the empirical research question, one may wish to
make further assumptions in order to reduce the complexity or add
other (e.g. stochastic) sources of variation. For example, the re-
searcher may assume that it matters whether an actor (i.e. a cell in
this representation) interacts with a man or a woman when choosing
among routines available for exhibiting behaviour (“if then else”).
Thus, reflexive layers can be added to the communications under
study by nesting (sub)routines.

While behaviour can be independently specified, the overall
effects are dynamic when the cells operate concurrently. Because of
the interaction terms, actions are expected to have “unintended
consequences” at the level of social structure: social systems behave
according to their own (recursive) logic as soon as they are con-
structed as a system.® As shown above, these patterns are rapidly
more complex than “dual”. The formalization, however, enables
us to backtrack from overall effects in the model (on the screen)
to precise specifications in the computer code. Each subroutine
represents a theoretical insight about dynamic sources of change
(“action”). The substantive assumptions which go into the con-
struction of the model limit the number of possible states of the
macro-system. The feedback of the results of the simulation may
challenge the reflexive theories to improve on their respective
specifications.

Loet Leydesdorff is Senior Lecturer in the Department of Science and
Technology Dynamics at the University of Amsterdam. He has published exten-
sively in scientometrics, philosophy of science and sociology. His most recent
book is: The Challenge of Scientometrics: The Development, Measurement and
Self-Organization of Scientific Cormmunication (1995). Author’s address: Science
and Technology Dynamics, Nieuwe Achtergracht 166, 1018 WV Amsterdam,
The Netherlands.

APPENDIX
** Basic routine for the construction of the HODGEPODGE
** (using clipper '87: HODGEPOD. PRG)

clear all
declare old[2000], new[2000]
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afill (old, 1)

afill (new,

1)

clear screen
set cursor on
store 12 to vl

store 40 to v2

store | to
store 4 1o

store 4 to vSh

store 4 Lo

store 4 to v6b

v3
via

v6a

store 219 to v7

store | to

n

store 1 to counter
store “N” to v4

@ 10,1 say “Change options ? (Y/N) “ get v4 picture ”!”

read

clear screen
if v4 = “Y”

@ 7,1

@ 8,15

@ 9,1 say

@ 1,1s

@ 13,1

@ 14,1 s
@ 15,15

@ 16,1
@ 17,1
@ 18,1
read
endif

say

say “ ASCII character

** generation
vl = vl * 80 + v2

new{vl] = 75
do CORE

SEL CUursor on

clear all

return
k%

;o

“ Seed column ?

«

“

“«

«

;o

, %

“«

of the infection

Seed row ?

D-value ?

”

(1-24) 7 get vi
(1-80) ” get v2

get v3

Leydesdorff

New value = int(D + right/a + left/b + above/c + under/d)”

relative weight of cell on the right

relative weight of cell on the left
relative weight of cell above
relative weight of cell under

start iteration

Procedure CORE

set cursor off

clear screen
do while lastkey( ) < > 27

**

veol =0

construction ()f Screens

»

get n
? get v?

(a) " get vSa
(b) " get vSb
(c) 7 get vba
(d) 7 get v6b



Leydesdorff Théorie et méthodes 435

vrow = 0
v_count = 1
do while v__count < 2001
do case
case new [v__count] < {0
set color to N
case new[v__count] > = 10 .and. new[v__count] < 20
set color to B
case new[v__count] > = 20 .and. new[v__count] < 30
set color to G
case new[v__count] > = 30 .and. new[v__count] < 40
set color to BG
case new([v__count] > = 40 .and. new{v__count] <
set color to R
case new[v__count] > = 50 .and. new[v__count] < 60
set color to RB
case new([v__count] > = 60 .and. new[v_count] < 70
set color to GR
case new[v__count] > = 70 .and. new|[v__count] < 80
set color to W
case new([v__count] > = 80 .and. newfv__count] < 90
set color to N4+
case new[v__count] >
set color to GR+
endcase
@ vrow, vcol SAY chr(v7)
v__count = v__count + 1
vcol = veol + |
if veol > 79
veol = 0
VIOw = vrow + |
endif
enddo

v
|
wn
<

il

Bl

** saving of screens
vscreen = “S* + Itrim(str(n))
save screen to &vscreen
it counter = 25
save to &vscreen all like S*
release all like S*
counter = ¢
endif
counter = counter + 1

** preparing for the next iteration



436 Theory and methods

set color to W

acopy(new,old)

v_count = 1

do while v__count < 200!
** control of boundary effects at the edges
v_Jeft = v_count — 1

if v_left =0
v__left = 2000
endif

v__right = v__count + 1
if v__right = 2001
v__right = 1
endif
v__above = v__count — 80
v__below = v__count + 80
do case
case v__above < 1
v__above = v__above 4+ 2000
case v__below > 2000
v__below = v__below — 2000
endcase

** difference equation

Leydesdorff

new[v__count] = int(v3 + old[v__left}/v5b + old[v__right]/vSa +;

old[v__above]/v6a + old[v__below]/v6b)
if new[v__count] > 100
** selection step
new[v__count] = 1
endif
v__count = v__count + 1
enddo
n=n-+1
enddo
clear all
return
** eofl )
** Routine for showing the results (SHOW.PRG)

clear all

n =25
v__counti =
v__count2 =1

xt =1

x2 = 1000

vl = “N”

clear screen

@ 10,1 Say “ Change defaults ? (Y/N) ” get v1 picture “!”
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read
if vI = “Y”
clear screen
vl = “§” )
@ 10,1 Say “ delay in seconds or in counts ? (S/C) ” get vl picture “!”
read
clear screen

if vi = “S”
@ 10,1 Say “ delay in seconds 7 get x1
else
@ 10,1 Say “ delay in counts " get x2
endif
read
else
vl = “S”
endif
DO scherm
clear all
return
EL L]

Procedure SCREEN
do while lastkey( ) < > 27
vscreen = “S” + ltrim(str(n))
vtemp = vscreen + “.mem”
if .not, file(vtemp)
exit
endif
restore from &vtemp additive
do while v_count < = 25
vscreen2 = “S” + ltrim(str(v__count2))
restore screen from &vscreen2
if vi = “S”
if x1 <> 0
inkey(x1)
endif
else
h =1
do while h < x2
h=h+1
enddo
endif
if lastkey( ) = 28
inkey(0)
endif
v__count!l = v__countl + 1}

437
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v__count2 = v_ count2 + 1
release all like &vscreen2
enddo
n=n+ 25§
v__countl =1
enddo
inkey( )
clear all
return

** eof( )

Notes

I. By definition, two interacting factors determine each other in the co-variation
while conditioning each other in the remaining parts of the uncertainty. Giddens
(1979) noted that the determining and conditioning functions of structure upon
action are provided with a meaning by reflexive actors in terms of “enabling and con-
ditioning” structures.

2. For the case of a = b = ¢ = d = 4, the two formulations lead to similar
results.

3. The pattern was defined not in colours but in terms of the numerical values
underlying the colours. The procedure checks whether seven of these eight values cor-
respond with values in the previous iteration, and in this case only the eighth value
is adjusted.

4. The predominance of the value of [ is a consequence of the selection
mechanism: once a cell grows larger than 100, it is reset to 1 before the next iteration.

5. Without theoretical specifications the problem would rapidly become non-
computable (e.g. Ebeling, 1991).

6. One can, for example, use the Markov property for testing the extent to which
the emerging network of interactions has obtained “systemness” (Leydesdorff,
1992b; cf. Theil, 1972).
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