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The static and dynamic analysis of network 
data using information theory 

Loet Leydesdorff 
Department of Science Dynmnics, Nierrwe Achtrrgrucht I&, 1018 ~A~.~terd~~n, Netherkmds 

Information theory provides us with methods for both the static and dynamic analysis of network 

data. Since the models are derived within one framework, the results of the multivariate analysis 

and the time-series analysis can be made relevant for one another. Additionally. using the static 

model, one can create an exact dendrogram, and determine the precise number of clusters. The 

algorithm is generalizable to clique analysis. Using the dynamic model, developments can be 

revealed which were not suggested by the comparison of results of various forms of multivariate 

analysis for each year separately. The question of using these methods to design research about 
structure/action relations is discussed. 

1. Introduction 

In addition to unsolved problems relating to inferences among differ- 
ent levels of aggregation (Langbein and Lichtman 1978; Van den 
Eeden and Huttner 1982), the structural analysis of social action, as 
contained in network data, has to solve the methodological problem of 
how to account for change over time. On the one hand, in most 
common forms of multivariate analysis, this dynamic aspect is handled 
by “cutting” the three-mode matrices into two-mode “slices”, and 
then by comparing the results for each “slice” separately (see, e.g., 
Tijssen and De Leeuw 1988: 727). The disadvantage of this method is 
that “change with time” is not accounted for systematically, but only 
treated as a difference. 

On the other hand, in time-series analysis, a time series is defined 
as a set of observations obtained by measuring a single variable 
regularly over a period of time (see, e.g., McClearly and Hay 1980). In 
the multivariate case, one has to be able to specify the dependent 
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variable. ’ Data that have been collected for the purpose of network 
analysis, usually will not readily permit extension to this kind of 
modelling, or only at the expense of a rapid increase in the method- 
ological complexities of the analysis (see, e.g., Tuma and Hannan 
1984). 

The further elaboration of time-series analysis to the point where 
the theoretically interested researcher is able to combine the interpre- 
tation of results from it with results from network analysis seems a 
longer term methodological objective; at present by using these meth- 
ods one obviously runs the risk of becoming distracted from theoreti- 
cal questions to methodological problems. However, this problem is 
even more general: the proliferation of methods for statistical analysis 
makes the choice of parameters (like similarity criteria, algorithms, 
cut-off levels, etc.) a matter of increasing methodological sophistica- 
tion. In most cases these initial, seemingly technical (but yet analytic) 
choices heavily influence statistical results, and hence, interpretation. 

In social network analysis, more particularly, a “relational ap- 
proach” and a “positional approach” have been distinguished (Burt 
1982). While the former focusses on diadic relations, cliques and 
hierarchies using graph-analytic notions, the latter focusses on “struct- 
ural equivalence” using factor-analytic notions. However, the question 
of how to relate the two approaches analytically has not yet been 
systematically addressed. 

Additionally, the intelligibility of relations among results may be 
affected when the measurement scales of the variables differ - as is 
often the case when we want to infer among levels of aggregation. For 
example, co-occurrences which can be measured as frequencies, i.e., 
at interval scale in the overall data set, may either occur or not occur 
dichotomously at lower levels. Consequently, we may have to combine 
results from non-metric and metric forms of analysis. In terms of 
methodologies, this often implies the choice of other parameters, and 
therefore again an increase in the incomparability of results, and 
consequently another obstacle to the drawing of inferences. 

’ In a design based on cross-lagged panel correlations, one may also use multivariate distribu- 

tions, e.g., matrices, if one is able to compute a single (cross-) correlation. However, thereafter, 
the systematic decomposition of the results in terms of the different variables is impossible. See 

also: Krempel (1989); Cook and Campbell (1979). 



The results of each statistical analysis should preferably be directly 
relatable to the specified theoretical problems without causing addi- 
tional problems of interpretation, and the results of one type of 
analysis should add to our understanding of the results of another 
analysis in an intellegible way. We need methods to study problems, 
and not problems to study methods. 

In this study, I will show that we can use measures derived from 
information theory - also known as statistical decomposition analysis 
(Theil 1972) - as one conceptual framework in order to study the 
most common problems of multivariate analysis, both in a static and in 
a dynamic mode. In addition to the integration of results from these 
two perspectives, statistical decomposition analysis allows for a precise 
study of the effects of aggregation and disaggregation. Despite the 
fact that it requires the variables to be measured only at the nominal 
scale, it preserves any additional information contained in more 
refined measurement (see, e.g., Krippendorff 1986). 

In a final section, I will discuss the potential of using these method- 
ologies to design research questions about structure/ action relations. 
The dynamic extension makes it necessary to further specify the 
difference between a “structuralist theory of action” (Burt 1982) and a 
theory of “structure”/“action” contingencies: dynamic change in 
str~&t~~re should not ex ante be equated with change in eige~str~~~ture 
among data matrices, which are measured as aggregates of actions at 
different points in time. 

As data, I will use the matrix of aggregated citations among 13 
major chemistry journals as a typical set of network data. (See also 
Table 1.) 2 Aggregated journal-journal citations are often used as a 
high-level sociometric structure in scientometric studies in order to 
create “maps of science” (Price 1965). In this context, this type of 
matrices has been thoroughly analyzed in recent decades using various 
forms of multivariate analysis (Carpenter and Narin 1973; Narin 1976: 
185-190; Doreian and Fararo 1985; Leydesdorff 1986, 1987; Doreian 
1986; Tijssen et al. 1987). The data are readily available from the 

’ The 13 journals comprise a set of journals heavily linked to the JACS and the JChetnPh as the 

two central chemistry journals in the AIR-journal set for 1984. The list was generated in the 

context of another research project (Cozens and Leydesdorff 1988). See for the boundary 
delineation Leydesdorff (1986). 
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Journal Citation Reports of the Science Citation Index. ’ In the static 
analysis, I will focus on 1984 data only (the data matrix is given in 
Table 2), and then include the corresponding data for other years in 
order to develop the dynamic model. 

2. Information theory: a brief introduction 

If we define h as the information content of the message that an event 
occurred, then the expected information content of the distribution of 
a variable with relative frequency pi can be written as: 

H=x;P,*h, (1) 

By using Shannon (1948)‘s classical function for information (hi = 

210g(1/p;)L 4 we may write: 

H = -Zip; ‘log pi 

and for the multivariate case: 

H = -C, ~, ~, p;jk2 log Pijk 

(4 

(3) 

Analogously to chi-square, H can be used as a measure of the 
association among variables. The overall uncertainty for two variables 
x and y, H(x, y), is equal to H(y) plus the amount of uncertainty 
which x adds to it, given the uncertainty in y, i.e., H(x 1 y). There- 
fore: 

H(x, Y) =H(Y) +H(xl Y> (4) 

’ However. in the printed edition, the tails of the citation distributions are summed under “all 

others”. As a rule of thumb, values equal to or lower than five are omitted. (See also Garfield 

1972.) In addition to these thresholds, Rice et al. (1989) noted that there are statistical and 

systematic errors caused by the lack of standardization in the spelling of journal names. 

However, as these authors note, for the type of journals which we will use here (with large 

numbers of total citations included in the JCR), these effects are probably insignificant. 
4 I will use the binary base of the logarithm throughout this study, and therefore express the 

information in bits. 
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Table 1 

Journals used for the construction of a journal-journal citation network 

Journal title Variable Sequence 

name number 

Chemical Physics 

Chemical Physics Letters 

Inorganic Chemistry 

J. of the American Chemical Society 

J. of Chemical Physics 

J. of the Chemical Society - Dalton T 

J. of Organic Chemistry 

J. of Organometallic Chemistry 

J. of Physical Chemistry 

Molecular Physics 

Physical Review A 

Tetrahedron 

Tetrahedron Letters 

ChemPhys 1 

ChemPhLt 2 

InorgCh 3 

JACS 4 

JChemPh 5 

JChemSc 6 

JOrgChem 7 

JOrgmetC 8 

JPhChUS 9 

MolPhys 10 

PhysRevA 11 

Tetrahe 12 

TrahLt 13 

The mutual information or transmission between x and y is conse- 
quently defined as: 

T(x, y) =fqx) -fq” I Y) 

This is the reduction in the uncertainty of the prediction of x, given 
knowledge about the distribution of y. Figure 1 gives a visual repre- 
sentation of the various relations (cf. Attneave 1959). 

While “delta chi-square” does not have a clear interpretation, 5 the 
decomposition of H (and I, below) in terms of the contribution to the 
uncertainty of each of the component cells (or subsets) is straightfor- 
ward. 6 Therefore, additionally the following formula can be derived 
for disaggregation of H into g groups (Theil 1972): 

H=H,,+C,P,*H, 

Ho is a measure of the uncertainty among the groups g, or in other 
words, a measure of the specificity of the distribution of the relevant 
variables within the groups. 

’ Strictly speaking, chi-square tests only independence; it provides little information about the 
strength or form of the association between the two variables. 

’ The so-called likelihood ratio chi-square CL2 = 2X,,Z,F,, In(F,j/ft,) is equally decomposable 

into interpretable parts that add up to the total. This measure is in essence an information 

theoretical formulation of the chi-square. See also Krippendorff (1986). 



On the basis of the above definition of information, it can be shown 
that if we have a system of mutually exclusive events, E;, with prior 
probabilities p,, then the expected information content I of the 
message which transforms the prior probabilities p, into the posterior 

probabilities q, is given by the following expression: 7 

I = c,q; * 2lO&l/P,) (7) 

Correspondingly, for the multivariate case, the expected information 
content of the message transforming the prior probability distribution 
pijx of events into the posterior probability distribution qrlk, is equal 
to: 

z = Xjz'j2', q(jk * ‘lOg( q,jk/PlJk) (8) 

Although overall I 2 0, ’ AZ can become negative if q <p. ’ (Of 
course, AH is always 2 0.) 

In the dynamic perspective we do not just take “time” as another 
variate which may then co-vary with other variables, but we compare 
among events in a sequence. In our case, aggregated data for one year 
will constitute the “unit of event. “’ Again, one may either consider 
the multivariate distribution as one event, or compare among values in 
corresponding cells as events, and relate the two (after proper normal- 

’ The expected information content of the message which transforms prior probability p into 

posterior 9. if event E ultimately occurs, is equal to: 

;(9:P) = h(p)- h(9) = log(9/P) 

However, the probability that the event will occur is only equal to the posterior probability 9, 

and hence: 

’ See for the proof Theil (1972: 59f). 
‘) In the case of 9 = p. no information is added or lost; since the log(l) = 0, I vanishes. Note 

that a zero in the prior distribution would make a non-zero value in the posterior distribution a 

complete surprise, and therefore, I --foe. In order to minimize the amount of expected informa- 

tion content originated by missing values in otherwise similar distributions, I replaced all missing 
values in this study with the value of five, since this is the cut-off level of the printed edition of 

the Joumul Citatiorr Reports from which the data were obtained. See for a discussion of the 

calculation of I in the case of “emergence” Leydesdorff (1990a). 

“’ However, one may think of “units of event” as disaggregatable (months, weeks, days, etc.) or 

as aggregatable (decades, centuries, etc.) 
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H(x.y) 
f-_-_--------__------_--__--__-, 

I I 
_-__,_--__-+, 

H(x) ’ I H(y) 
‘+------__--_--__- 
I 

I I 

I I 

4----d 
t-- H(x(y) ---d T(x.y) ‘- - - H(yJx) -- 

Fig. 1. Relations of expected information contents, mutual information, and conditional en- 
tropies between two variables x and p (Attnaeve 1959). 

izationl because of the additive properties of I. However, in the 
dynamic case the calculation rules among levels of aggregation are 
more complex than in the static case (see Theil 1972). 

In principle, the two formulas, i.e., for H and I, provide us with a 
complete framework for the development of a set of methodologies 
equivalent to multivariate analysis and time-series analysis, respec- 
tively. ” 

3. Asymmetry: the comparison of two distributions 

Let me begin my explication of the possibilities to apply information 
theory to social networks by using asymmetry as a simple example. 

The matrix (in Table 21 is asymmetrical. It contains citing patterns 
and cited patterns, and the relations between the two, since each cell 
aij contains the number of citations journal i gives to journal j, and 
cell aji the number of citations journal j gives to journal i. In most 
forms of multivariate analysis a separate analysis is necessary for 
citing and cited patterns (by transposing the matrix); ‘* in multi-di- 
mensional scaling one sometimes combines the two analyses by using, 

” For the further elaboration of relations among statistical decomposition analysis and regres- 

sion analysis and to Markov chain analysis, the reader is referred to Theil (1972). 

‘* In some forms of (quasi-)correspondence analysis one may be able to represent the analysis of 
asymmetry and the mapping of structure in one picture. However, the interpretation of these 

maps with respect to the attribution of cases to groups remains open, as with multi-dimensional 

scaling. (See also Tijssen et al. 1987.) 
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for example, the mean of aij and aji, while discarding the diagonal 
values. l3 

By using information theory, the relations between citing and cited 
patterns can be addressed overall as a static problem in terms of the 
relation between the two axes of the matrix as variables (i.e., citing 
and cited) or as a “dynamic” problem, i.e., as a comparison between 
two distributions, taking either aij as the a priori values and aji as the 
a posteriori (or vice versa), and by subsequent computation of 
I(citing: cited) and Z(cited: citing). The advantage of this latter ap- 
proach is the direct interpretability of its decomposition into each of 
the constituting journals (and even cells), while the static analysis only 
teaches us about the relation between citing and cited as generalized 
variables in the matrix. Therefore, I will let the discussion of the static 
analysis follow from the discussion of this “dynamic” perspective. 

Each cell value aij contributes to the asymmetry when compared 
with its counterpart aji. The expected information content of the 
message of the difference between the two values is relative to the 
overall matrix, Therefore, by using formula (8) above, the total infor- 
mation content of the asymmetry is equal to: 

Z=ZiZ’j(fjj/N) *log 
( fijiN) 

i i (hiiN) 

Since all the cells of the same matrix are involved in both the 
computation of I(citing:cited) and I(cited:citing), the two sum totals 
for Als have to be identical. For the 1984 matrix, this I is equal to 
0.290 bits. 

However, we may use the I and its component Als as straightfor- 
ward measures of the asymmetry of the matrix, and of its rows and 
columns, respectively. The respective sums of Als for rows and 
columns will usually differ. Since the sign of each contribution to I is 
dependent on the increase or decrease of the relative frequencies 
(AI = (f,j/N) * log(fij/&l), the ZAZ for each subset gives us a direct 
measure of whether the subset is a relative “sink” or a “source” of 
citations. Table 3 lists the decomposition of I in terms of rows and 

I3 See for a discussion of the effect of diagonal values in the case of journal-journal citation 

matrices: Price 1981; Noma 1982; Todorov and Glkinzel 1988. 



310 L. Leydesdorff /Analysis of network data using information theory 

Table 3 

Deltas I (in bits) for cited versus citing patterns, and vice versa 

(cited: cit&g ) (citing: &fed) 

JACS 

JCHEMPH 

TRAHLT 

MOL.PHYS 

PHYSREVA 

CI~EMPHLT 

JCHEMSC 

CHEMPHYS 

INORGCH 

JORGMETC 

JORCHEM 

TETRAHE 

JPHCHUS 

0.230 - 0.073 

0.148 - 0.052 

0.016 0.010 

0.007 0.000 

0.005 - 0.002 

- 0.003 0.019 

- 0.005 0.020 

-0.011 0.029 

-0.012 0.052 

- 0.016 0.042 

- 0.017 0.077 

- 0.020 0.064 

- 0.03 f 0.104 

(0.290) (0.290) 

columns for the citation patterns of the 13 journals under study here: 
Fig. 2 plots these values as coordinates of a do-dimensional map. 

Both the shape of the curve and the position of the points in Figure 
2 inform us about the citing/cited relations in the network: journals 
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Fig. 2. “Asymmetry”; expected information values in bits of information for cited versus citing 

patterns of 13 major chemistry journals. + 1984; a 1981; 0 1987; -- -+ indicates develop- 

ments 1981+ 1987. 
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in the second quadrant are relative “sources” of citations, while 

journals in the fourth quadrant are relative “sinks”. The closer to the 
origin, the more neutral the journal is, in this respect. Obviously, the 
two major journals in the field (JACS and Journal of Chemical 
Physics) are also the two major sources of citations, not only in 
absolute but also in relative terms. At the other extreme, the Journal 
of Physical Chemistry-US is the least cited, and in relative terms 
consequently the major “sink” of citations. 

Because of the mathematics of I, points below and to the left of the 
diagonal ( y = -x) are not possible. I4 The various points in the map 

can also be considered as vectors (from the origin) with an angle of cx 
to the diagonal. The (co)tangent of this angle gives a measure of the 
relative asymmetry of each of the rows and columns (k), since it can 
be shown l5 that: 

cotg(cr) = 
-wk -P/J 
&(& +pli) 

(*I 

This indicator therefore expresses the relative weight of the differ- 
ences, i.e., the asymmetry, between respective ps and qs for each 
network element k. 

In summary, the position of each point on the map informs us 
about a corresponding journal’s position in the network (as a “sink” 
or “source” of citations). The distance from the origin is a measure of 
the size of the asymmetry effect, and the angle of the vector with the 
indicated diagonal is a measure of the relative weight of the asymme- 
try in terms of the given element. 

4. “Citing” and “cited” as variables in the static analysis 

By using the static measures H, expected information contents for 
citing and cited patterns can be computed for the journal-journal 
citation matrix, and the results can be evaluated in terms of their 
mutual information, and in terms of their constituents by subsequent 
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I4 It follows from considerations about the relations among the I,,,,,,, dl. and the I,ubgmup, i.e. 

in this case the I,,,,,,,, that the sum of the two dls for row and column for each element k of a 

square matrix must be larger than or equal to zero, and that therefore the points will be 

positioned in the right upper triangle of the graph only. 

Proof: 
Is have to be positive (cf. Theil 1972: 59f.j both for groups and for subgroups. 31s can be 

negative as an effect of normalization, However, I,,,,,,, can also be obtained from the d Is for 

row and columns by appropriate normalization. 

Let tzq and rrP be the margin totals for row k and column k, and N be the grand sum of the 

matrix; 9 and p are relative frequencies of the cells belonging to the respective row and column 

in terms of the grand sum of the matrix. Normalization relative to the margin totals for the 

respective row and column is achieved by multiplication of 4 by (N/n,) and of p by (N/n,,) 

Therefore: 

I =~{4*(Wn,)) 1% 
q *(N/n,) 

,O”r”d 
P *(N/n,,) 

Since I,,,,,;,, 2 0: 

z{ log(q/QJ-log(?Jn,)} L 0 

2 log(q/p) L log( n,/n,) 

zq lW(q/P) I n4 b(n,/n,) 

However: 

2;4 log(q/p) = AIc,.,,, 

and therefore: 

Analogously: 

Al<,:,,? np log(n,/n,) 

and therefore: 

A~,y:p~+A&,:q~~nq log(n,/n,)+n, log(n,/n,) 

2 (n, -“J log(n,/n,) 

For rr4 > nP, this is a product of two positive factors; hence, > 0; for n, = rrp, this product is 

zero; for n4 < nP, this is a product of two negative factors; hence, > 0. Q.e.d. 



L. Leydesdorff /Analysis of network data using information theory 313 

decomposition. If we do so for the 1984 matrix, we find the following 
values: 

H(citing, cited) = 5.667 bits 
H( citing > = 3.457 
H( cited) = 3.173 

and therefore: 

H(citing I cited) = 2.493 
H(cited ) citing)= 2.209 
T(citing, cited) = 0.964 

” By using Pythagoras, the (cokangent can be calculated from the derivation of the distance (d) 
of point k from the origin and its distance (c) to the diagonal: 

d=E, tog(Qpl,)*/(qk2+p:) 

and therefore: 

cotg(ru) = \lo Z‘k(9k - Pk) 
c = Z‘k(4k + Pk) 

The advantage of using the cotgO instead of the tg() is its continuous decline over the relevant 

range (0 to 180 degrees), while the tg(90 O) =m. For the 13 journals considered here, the 

following values were found: 

JACS 

JChemPh 

MolPhys 
PhysRevA 

TrahLt 

ChemPhLt 

InorgCh 

JChemSc 

JOrgChem 

JOrgmetC 
ChemPhys 
JPhChUS 
Tetrahe 

tg(cu) cotda) 
4.749 0.211 

5.992 0.167 

23.599 0.043 

33.603 0.030 

77.721 0.013 

- 17.076 - 0.059 

- 7.737 -0.129 

- 7.592 -0.132 

- 6.296 -0.159 

- 5.654 -0.177 
-4.681 - 0.214 
- 3.754 - 0.266 

- 2.729 - 0.366 
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H( citing) - H( citing 1 cited ) 

H( citing ) 
= 27.9% 

H( cited) - H( cited I citing) 

H( cited) 
= 30.4% 

This means that the citing pattern is a 10 percent better predictor 
of the cited pattern than vice versa. However, the mutual information 
between “cited” and ‘citing” is remarkably low, at first sight (0.964 
bits): one would have expected the two patterns to determine one 
another to a much larger degree. However, the mutual information is 
only of the order of a 30 percent mutual reduction of the uncertainty 
in the prediction, since there are discrete groupings in the data, each 
with high mutual information within the subsets, but hardly any “in 
between group” co-variance. 

This result therefore raises the question of whether we can also 
infer the grouping of the journals using statistical decomposition 
analysis. Of course, this would bring the major questions back on 
stage, which have led to the development of various forms of multi- 
variate analysis. If we want to cluster, what will we regard as more or 
less similar, i.e., what will be the similarity criterion? Are we to use 
agglomerative clustering techniques or divisive ones? Do we want to 
take all variance within the matrix into account, or begin the cluster- 
ing by focusing only on diadic relations between cases which exhibit 
strong graphs? 

5. Agglomerative clustering 

A simple agglomerative clustering algorithm would be to merge as a 
cluster those two distributions (rows, columns or both) which are most 
identical, i.e., mutually have the lowest I associated with the message 
which converts the one distribution into the other, and subsequently 
to iterate the procedure. In each step this algorithm seeks the strongest 
graphs. ” 

Figure 3 shows the results, in the form of a dendrogram, for the 
citing patterns of these 13 chemistry journals in 1984. Since the initial 
step does not imply the construction of a symmetrical (dis)similarity 
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Fig. 3. Agglomerative clustering. Dendrograms of 13 major chemistry journals using measures 

from information theory. 

matrix, the leaves of the dendrogram do not have to be equal, as is the 
case in most clustering programmes. The vertical distances, therefore, 
meaningfully represent the expected information values of the cluster- 
ing in each case. 

If we compare the results with a dendrogram in Figure 4 which is 
based on using Wards’ mode of analysis for clustering the Pearson 
correlation as similarity measure, I7 we notice that the qualitative 
order is the same for the “physical chemistry” cluster, but that the 
complexity of the position of JACS is visible with extreme precision in 
this graph: JACS is only marginally more linked to the “organic 
chemistry” cluster than to the the “inorganic chemistry” group. 

I6 However, i,; will in general be unequal to Z,,, and therefore, it may occur (as actually 
happens with JAGS in relation to the “organic” and “inorganic chemistry” clusters below) that 

despite the fact that two cases form a strong graph tin the sense of mutually having the lowest I 
associated with transformation into each other), a third case can combine with one of the two 

values with an in-between value for I. If that happens, we can merge this third case (as a 

“weaker graph”) in the same step of the clustering procedure. 

I7 Cluster analysis is well-known for its proliferation of options, caused by the possibilities of 

choosing among similarity criteria and clustering algorithms. The results are very different, 
accordingly. I usually found the best graphic representation of factor analytic results by using 

this combination of Wards’ mode of analysis on a Pearson correlation matrix, although for 
formal reasons this combination is not allowed (cf. Leydesdorff 1987; Leydesdorff and Zaal 

1988). Analyses are based on using CLLJSTAN 2A. (See for further details, e.g., Everitt 1974.) 
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Fig. 4. Cluster analysis of citation patterns for 13 major chemistry journals; Wards’ mode of 

analysis, Pearson correlation coefficient. 

6. Divisive clustering 

However, it is impossible to decide on the basis of this agglomerative 
procedure how many groups should be distinguished, since the ag- 
glomerative steps are formally equivalent. Therefore, we may again 
raise the question of whether JACS is to be counted as part of the 
“organic chemistry” group or whether it should rather be handled as a 
separate case? Were we to choose the latter option, then what about 
Physical Review A, since this journal bifurcates from the “physical 
chemistry” cluster at even a larger distance (in terms of bits) than 
JACS from the “organic chemistry” cluster core? Could we not find a 
more strict criterion for division into groups using the rules of statisti- 
cal decomposition for divisive clustering into groups directly? 

The problem of how to choose the number of clusters, factors, 
groups, dimensions, etc. is a pervasive one in multivariate analysis. If 
there are no a priori theoretical reasons - as it is usually the case in 
exploratory uses of the techniques - such decisions tend to remain 
somewhat arbitrary. In factor analysis, methods such as visual inspec- 
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tion of the scree plot or a cut-off at certain eigenvalues are common 
practice. In cluster analysis and multidimensional scaling, decisions 
based upon visual inspection of the results are also common. In 
bibliometrics, Small and Sweeney (1985) have proposed “variable 
level clustering”, i.e., in essence the adaptation of the clustering level 
to the density of the cluster involved; the search for a formal criterion 
is thus replaced by a procedural one. 

Indeed, statistical decomposition analysis offers a straightforward 
answer to this problem, since disaggregation is highly formalizable. As 
noted in a previous section, disaggregation of a set in g groups can be 
described with the following formula: 

in which H is the expected information content (entropy) of the 
aggregated distribution, and P, the probability of each of the groups 
which as a subset has an uncertainty equal to the respective H,s. The 
“in-between group entropy” H,, is a measure of the specificity that 
prevails at the level of the subsets. 

The right-hand term of the above equation is equal to the entropy 
of a variable (n) under the condition of a nominal variable (m) which 
can be attached to the grouping (H(n/m)l. (E.g., the grouping vari- 
able m may be attributed on the basis of the factorial structure.) The 
left-hand term, Ho, is therefore equal to H(n) - H(n/m), which is 
the uncertainty in y1 that is not accountable to the uncertainty within 
the groups, or in other words the trurzsmission (mutual information) of 
the grouping variable m itself to II. The larger this transmission, the 
more reduction of uncertainty there will be among the groups, and 
therefore the better the groups will be in terms of the homogeneity of 
their distributions. However, by definition: 

H(nlm)=H( n, m> -fqm) (10) 

and therefore: 

H,=H(n) +ff(m) -H(n, m) (11) 

This means that the increase of H,, if we add another group (cluster, 
factor, etc.) is composed of a part that is dependent only on the 
grouping variable (H(m)), and a part which is dependent on the 
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interaction between the variables n and m (H(n, m)). The question 
thus becomes: for which value of m does the function (H(m) - 
H(n, m)}, and consequently Ho, reach a maximum? Although this 
problem may be addressed using differential calculus (6{H(m) - 
H(n, m)}/6m = 0), let me address the problem here with a more 
intuitive approach. 

If we divide one group into two subgroups i and j, using N,j = H,, 
+ P,H, + P,.H,, the aggregated Hij may be larger than both Hi and 

H,, or larger than one of them and smaller than the other. (The two 
groups cannot be both larger than H,j, since the “in-between group” 
H,, is necessarily larger than or equal to zero.) The case of Hi 5 Hi, I 
H, corresponds to the removal of the more than average heteroge- 
neous case(s) into a separate subgroup: therefore, this new subgroup 
has a higher uncertainty, and the remaining subgroup becomes more 
homogeneous than the original group. This is always possible, but it is 
not yet clustering, which entails the notion of reducing uncertainty in 
both subgroups. Therefore, we may define “divisive clustering” as the 
case where both new subgroups have a lower expected information 
content than the undivided group. 

Note that the above justification of the division is based on the 
right-hand term of the formula for disaggregation only (2, P, H,). The 
value of the left-hand term (H,,) is sensitive to both the number of 
groups - since each further division adds to H,, unless the two groups 
have similar Hs - and to the quality of the attribution of cases to 
groups given a certain number of groups. However, the two questions 
- (1) concerning the number of groups, and (2) concerning the 
attribution of cases to groups - are obviously independent, given the 
two parts of the above noted equation. 

The possible number of attributions of n cases to m groups (m < n) 
increases so rapidly with the number of cases and the number of 
groups, that systematic comparison of all possible combinations can 
imply heavy computation. However, in practice, this type of repetitive 
approach to the data, which is characteristic of information theory 
(Krippendorff 1983, can be programmed in DO WHILE-loops: first, 
we investigate whether the setting apart of any of the cases leads to 
two subgroups, both of which have lower Hs than the overall H. If so, 
we begin with the one which leads to the highest H,,, and systemati- 
cally evaluate whether the addition of other cases to this one subgroup 
leads to a further increase of Ho, etc. Once we have so investigated all 
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Fig. 5. Divisive clustering of citing patterns of 13 major chemistry journals. 

the possibilities and decided upon the best division into two sub- 
groups, the analysis can be repeated for the two subgroups respec- 
tively. After normalization of H,, in terms of the grand sum of the 
matrix, a dendrogram can be constructed, which is exact both in terms 
of the vertical distances between the nodes and in terms of where to 
draw the line above which further division leads to subgroups which 
are not both lower in their entropy than their respective aggregates. 
This level in the graph corresponds to a maximum for H,,. 

Figures 5 and 6 show the dendrograms for citing and cited patterns, 
respectively. The dotted line represents the level above which further 
division becomes counterproductive (i.e., would lead to a decrease of 
total II,,). From these figures, we may conclude that there is a 
relevant subdivision of the cluster which we considered as the one 
“chemical physics” cluster above; however, this subdivision is some- 
what different as “cited” and “citing”. Both “cited” and “citing,” the 
Journal of Organometallic Chemistry has to be considered as an 
isolate, and “cited” it seems that the whole cluster of “inorganic 
chemistry” falls apart. However, along both axes, JACS firmly belongs 
now to the “organic chemistry” cluster. (As was noted above, the 
major limitation of divisive clustering is that each case has to be 
attributed to one group only, and that details about inter-group 
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Fig. 6. Divisive clustering of cited patterns of 13 major chemistry journals. 

positions, as shown by using agglomerative clustering 
analysis, are not revealed.) 

and factor 

In summary, we may conclude that in terms of dividedness, the 
exact clustering of these two patterns leads us to the distinction of 
seven and eight subgroups, respectively. The “cited” pattern is more 
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Fig. 7. Scree plots eigenvalues citation patterns for 13 major chemistry journals 1984: a citing. 
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Factor analysis of citing pattern of 13 “chemistry journals”; four factors forced. Principal-com- 

ponent analysis, Varimax rotation Kaiser normalization 

Factor Eigenvalue Pet of Var Cum Pet 

1 5.10338 39.3 39.3 

2 3.71624 28.6 67.8 

3 1.74990 13.5 81.3 

4 0.88657 6.8 88.1 

Varimax converged in 5 iterations 

Rotated factor matrix: 

Factor 1 
CHEMPHLT 0.97034 

JCHEMPH 0.95862 

CHEMPHYS 0.94609 

JPHCHUS 0.84504 

MOLPHYS 0.83678 

TETRAHE - 0.08978 

JORGCHEM - 0.08007 

TRAHLT -0.15185 

JACS 0.19066 

JCHEMSC -0.12914 

INORGCH 0.04224 

JORGMETC - 0.19436 

PHYSREVA 0.09225 

Factor designation: 

“them. phys.” 

Factor 2 Factor 3 Factor 4 

- 0.04210 - 0.05748 0.04397 

- 0.09472 - 0.07715 0.10414 

- 0.12497 - 0.13481 0.02694 

0.16857 0.11524 - 0.02427 

-0.17293 -0.19056 0.05371 

0.97921 

0.95670 

0.95405 

0.78732 

0.01697 

0.24207 

0.19302 

- 0.13880 

0.12886 - 0.07722 

0.16671 - 0.06099 

0.04416 - 0.09632 

0.52907 0.01318 

0.92257 - 0.09178 

0.87231 - 0.00175 

0.70483 - 0.14136 

-0.16657 0.96895 

“org. them.” “inorg. them.” 

divided than the “citing” pattern. It is interesting to look back at the 
scree plots of the respective factor analyses along those two dimen- 
sions (Fig. 7): with hindsight, we see more components in the cited 
patterns than in the citing patterns, but these differences are within 
the “scree” of the graph, and would therefore be considered as 
irrelevant for the factor analysis. (The default factor analysis in SPSS 
generates a three factor solution.) 

However, in factor analysis we aim primarily at the reduction of 
complexity in terms of the number of relevant factors, while in divisive 
cluster analysis we study the dividedness as such. If we force a four 
factor solution in the citing patterns of this matrix, PhysRevA loads 
highly significantly on this factor only (Table 4). JACS retains its 
interdisciplinary position. Subsequently, in the case of five factors the 



JOrgmetC loads primarily on this factor. However, with more than 
four factors, factorial complexity and factor pattern correlations in the 
oblique solution also increase. 

Therefore, we may now conclude that PhysReLlA constitutes a 
fourth element in the structure of the matrix along this axis. However, 
this was not obviously made visible by the factor analysis from SPSS or 
the two dcndrograms in the previous section. 

7. Confirmational usage 

In a confirmational design, we may now also investigate other ques- 
tions with respect to this matrix. For example, let us further investi- 
gate the “interdisciplinary” postion of JACS in the citing pattern of 
this matrix. We must therefore analyze in more detail the right leaf of 
the dendrogram in Figure 3, which contains citing patterns for both 
“inorganic” and “organic chemistry” journals. Questions can be raised 
as to whether JACS should be considered as an isolate or as part of 
the “organic chemistry” cluster; and so on. 

Table 5 gives an overview of the associated values for H for these 
various options. It can be concluded that by the criterion of lower Hs 
for subgroups than for the aggregate, we should consider this set as 
two subgroups of journals only: the overall H ( = 2.7088 bits) is larger 
than the value for the “organic chemistry” group (2.4137 bits) or for 
“inorganic chemistry” (2.5534 bits). Further division of the “organic 
chemistry” group into a separate group containing JACS and a group 
containing Journal of Organic Chemistry, Tetrahedron and Tetrahe- 
dron Letters leads to an H for JACS of 2.4304, which is above the 
previously found value of the “organic chemistry” group as a whole 
(2.41371. This means that the uncertainty has increased in this sub- 

Table 5 

Values of H associated with the right leaf of the dendrogram 

one group, 

t“inorganic” 
“organic”7 

+g‘ organic” - JACS 

‘- JACS 

2.7088 

2.5534 
2.4137 

2.1101 

2.4304 
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group; therefore, in agreement with the above result from the explo- 
rative analysis, this hypothesis should be rejected. 

Alternatively, the attribution of JACS to the “inorganic chemistry” 
group, under the assumption of three subgroups, leads to only a 
slightly lower value for H, (0.7144 bits) than attribution to the 
“organic chemistry” group (H, = 0.7170 bits). Therefore, JACS is 
more closely related to “organic chemistry” than to “inorganic chem- 
istry” also in this analysis. However, the difference is only marginal. 
This complex position of JACS between “organic” and “inorganic 
chemistry,” as evident from agglomerative clustering (Fig. 3) and as 
factorial complexity from factor analysis (Table 4) was obscured in the 
results from divisive clustering, since each case then has to be at- 
tributed to a specific grouping. 

8. Cliques 

The above decomposition in clusters was based on either citing 
patterns or cited patterns. In terms of the two-dimensional matrix Hii, 
we grouped along one dimension only, i.e., i and j, respectively. 
Grouping over i or j led to two different analyses, and correspond- 
ingly, to two sets of results. As we have seen above, the asymmetry of 
the matrix in this case was low, but in comparison to the citing 
patterns all values of H, for the cited patterns were slightly higher, 
suggesting a more pronounced dividedness than in the former case. 

However, in the case of a bivariate matrix we can also study 
H(citing, cited) and the effects of grouping in both dimensions in one 
design. Analogously to the above analysis in each of the dimensions, 
we can study the transmission H(citing I a, cited 1 b), in which now 
both a and b are grouping variables. Grouping bivariate arrays in this 
way also gives us the possibility to integrate relational approaches 
(from graph and clique analysis) with approaches based on structural 
equivalence (i.e., eigenvectors) into one conceptual framework. How- 
ever, in order to keep the discussion as little mathematical as possible, 
I will address the problem again in terms of disaggregation in analogy 
to the discussion above. 

Let me use the simple matrix depicted in Fig. 8 to explain my point. 
Principal component analysis, and therefore also factor and cluster 
analysis, is based on grouping over rows or columns. However, were 



11 12 13 14 

21 22 23 24 

31 32 33 34 

41 42 43 44 

Fig. 8. Illustrative. exemplary matrix. 

we for example to hypothesize that 1 and 2 form a clique, we would 
expect cells 11 + 12 + 21 + 22 to form a strong “cluster” when 
compared with the sum of all the other cells. For both groups - the 
one supposedly forming a clique and the remainder - we can calculate 
an H,j, and a Pii, and after appropriate weighting an H,, can be 
calculated (by substraction from Hij for the whole set). Again, H,, is a 
straightforward measure of the specificity of the subsets given the 
number of clusters (in this case two). However, the cluster may consist 
of any part of the matrix, and not necessarily a set of columns or rows: 
we can attribute each cell value to the hypothetical subset and to the 
grand sum respectively, and consequently calculate an H,,. As the 
reader should now understand for the same reasons as above, we are 
able to distinguish between the effects on H, of increasing the 
number of clusters (“cliques”) and the effects of better grouping given 
a certain number of clusters. 

Note additionally that it is not necessary to determine only groups 
which are symmetrical with respect to the diagonal, since with our 
formulas we can vary along both dimensions independently. We may 
also decide not to include the diagonal elements themselves into the 
clusters, or to treat them as a separate group. 
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Table 6 

Clique analysis of the “chemical physics” and PhysRer,A group in terms of H,, in bits of 

information 

5 “chemical physics” journals 

PhysRevA 

HO 
1.9982 

(various combinations with in-between values) 

ChemPhys + ChemPhLt + JChemPh 

PhysRevA + MolPhys + JPhChUS 

ChemPhLt + JChemPh 

PhysRevA + MolPhys + JPhChUS + ChemPhys 

ChemPhys + ChemPhLt 

PhysRevA + MolPhys + JPhChUS + JChemPh 

2.1084 

2.1077 

2.0358 

The use of asymmetries in i and j gives room also for the distinc- 
tion between “weak” and “strong” graphs in the analysis. Strong 
cliques correspond to mutual diadic relations, and therefore they have 
to be operationalized in this framework in terms of the two variables i 
and j ranging over the same values only (i.e., y1 < i < m AND n <j < 
m). Note also that while the former analysis implied the notion of 
“structural equivalence” as fundamental to the idea of factor and 
principal component analysis, this analysis addresses questions con- 
cerning relations in graphs, as they are distinguished nowadays from 
the former analysis in network analysis (Freeman 1978/79; Burt 
1982). 

With respect to the analysis of the 1984 matrix, I will now limit the 
discussion to the question of whether the four major groups among 
the 13 journals which we identified above in terms of structural 
equivalence also correspond to four cliques in this network. (However, 
in searching for four cliques in the matrix, we must allow for five 
groups, since the off-diagonal elements form a remainder-group.) 

In terms of graph analysis, the “chemical physics”/PhysReuA-group 
separates into two cliques, which are different from the analysis in 
terms of structural equivalence. The attribution with highest H, is 
boldfaced in Table 6: in this analysis the “chemical physics” group is 
composed of two groups with the highest “within group” densities, 
consisting of ChemPhys, ChemPhLt, and JChemPh on the one hand, 
and PhysReuA, MolPhys. and JPhChUS, on the other. Note the 



differences in the citing and cited patterns: as a clique, the group of 
three journals with “chemical physics” in their title are one, while 
their citing and cited patterns are much more interactive with Mel- 
Phys and JPhChUS. As a clique the latter two form one graph with 
PhysReLlA. 

The values for H, in the Table 6 are based on the initial assump- 
tion from the above analysis about the attribution of JACS to the 
“organic chemistry” group of journals in the other part of the matrix. 
However, if in terms of clique analysis JACS is attributed to the 
“inorganic chemistry” group, H,, further increases by 0.0268 bits to 
2.1352. Obviously in this analysis, the latter grouping is better than the 
inclusion of JilCS as an “organic chemistry” journal. Since as we 
noted, we may vary the attribution over the two dimensions, we may 
also group JACS asymmetrically, for its citing and cited patterns. 
(However, we have then to correct for the diagonal values. Omission 
of the diagonal values can be argued for and against on substantive 
grounds, anyhow.) It can be shown that the attribution of JACS’ citing 
pattern to the “inorganic” chemistry group, and of its cited pattern to 
“organic” chemistry, leads to a further increase of H,, of 0.0304 bits, 
as against a further increase of only 0.0255 bits for the attribution of 
cited to “inorganic” and citing to “organic chemistry.” 

In summa~, the grouping in four cliques shows JACS to be at an 
asymmetrical crossroads where the “inorganic” and “organic chem- 
istry” groups meet; and the emergence of a specialty group of journals 
which have “chemical physics” as such in their title. Note that neither 
of these results is exhibited by applying cohesion analysis in STRUC- 
TURE (Burt 1987; see Fig. 9). 

9. The dynamic analysis 

We now extend the analysis to similar matrices for 1981 and 1987, in 
addition to the one of 1984 used above. In essence, we can think of 
the three matrices as forming a cube, in which all kinds of questions 
about conditional entropies can be raised: e.g., to what extent is the 
uncertainty of the prediction of development of citation patterns over 
the years for one set of journals, such as “organic chemistry,” reduced 
if we know the overall patterns of development for the aggregate? 
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CONSERVATIVE CLUSTERING OF THE DISTANCES 
(based upon the diameter or maximum algorithm) 
-- high distances within clusters are preserved 

The criterion distance, D, is the largest distance 
between any pair within a cluster. 

Values 
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Fig. 9. Cohesion analysis of citing patterns using STRUCTURE (Burt 1987). 

However, this would still be a “static” analysis: in a dynamic 
perspective we do not take “time” or “sequence numbers” as another 
variate which co-varies with other variables. (This would lead to 
problems of auto-correlation in the data; see below.) Instead, we 
compare among (sets of) events. The events are in this case the 
bivariate probability distributions of the matrices for each of the three 
years, i.e., 1981, 1984 and 1987. 

I will limit myself to the following exemplary questions among the 
many which could be raised: 

(1) What is the overall pattern of change? 
(2) How can we decompose this overall pattern in terms of citing and 

cited patterns and in terms of cliques? 
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(3) 

10. 
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How can we best analyze these patterns‘? Is multivariate change or 
univariate change predominant? Is the structure changing, or only 
the composing elements? 

Changing patterns 

Since in each of the matrices the mutual aggregated citation rates of 
the same 13 journals are organized in a similar way, ” as bivariate 
events of distributions with 13’ = 169 values each, between each two 
of which we can calculate values for AZij, which subsequently add up 
to an overall I, by using the formula: 

(14 

the difference between two corresponding cells f,, in two matrices can 
be straightforwardly transformed into one AI,, after normalization as 
relative frequencies, qij and pij The overall Jjj between each two 
matrices is fully decomposable in terms of these As. However, as long 
as we normalize in terms of the grand sums of each of the matrices, 
the sums of any corresponding subsets can also be compared straight- 
forwardly. The “information matrix” containing the As is a transfor- 
mation of the differences between the two matrices only. 

A very informative criterion for comparing subsets is the sign of a 
contribution to Zjj, i.e., the sum of the As for a subset, to the overall 
Iij. As noted above, the log becomes negative if 4 is smaller than the 
corresponding p, and positive if CJ is larger than p; and therefore the 
sign of each of the cells, and of each subset, is a direct indicator of the 
relative increase or decrease of weight of that cell or that subset. 
(Note that Jlj for the whole group must be positive or zero (Theil 
1972: 59f),) This means that we can directly measure the dynamics 
among subsets using respective sigmas. For example, if we want to 
compare the dynamics of citing patterns, we may sum the As over 
columns; if we want to compare cited patterns, we may sum the As 
over rows, and if we want to compare cliques as defined in the 
previous section, we may sum over respective rows and columns only, 
and compare the contributions to the overall I;,. In addition, we may 

lx See for a discussion of “emergence” of new categories Leydesdorff 1990~. 
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Table 7 

Expected information value for matrices of different years (mbits> 

a posteriori 

a priori 

1981 

1984 
1987 

1981 1984 1987 

* * *.* 54.3 81.7 

38.7 * * *,* 18.0 
62.7 18.0 * * *,* 

also analyze the difference between off-diagonal elements and diago- 
nal elements for each subset, using the substract of the two sigmas: for 
example, in terms of the model matrix above (see Fig. 8), we may sum 
over all deltas contained in subset 22 and compare that with the sum 
for the row (21 + 22 + 23 + 24) in order to give a straightforward 
answer to the question of how large a percentage of the increase or 
decrease in weight of that row is due to only the diagonal element. ” 

In summary, the matrix of values for Al which can be calculated 
between any two matrices representing the network elements can be 
used to answer a multitude of questions concerning the dynamics of 
clusters and graphs in various dimensions. Comparison of the three 
matrices under study here leads to the creation of three such matrices 
of As, notably one for the comparison of 1987 with 1984 data, one for 
the: comparison of 1984 with 1981 data, and one for the comparison 
of 1987 with 1981 data. 

Table 7 gives the overall values for Zij for the various years. 
Remember that this is a summary indicator of change in citing and 
cited patterns, since both these patterns are contained in each original 
matrix: the table gives only grand sums of each of the matrices of As 
which can be derived between each two of the original matrices. 

It teaches us that the overall dynamics of the citation patterns 
between 1981 and 1984 were three times as large 64.3 mbits) as those 
between 1984 and 1987 (18.0 mbits). The values in the upper triangle 
are larger both in terms of cells and for its sum (153.0 mbit) than for 
the lower triangle ( 4c = 119.41, which makes it clear that overall we 
gain more information by comparing with the time axis than by 
comparing against the time axis. The difference is due to the 1981- 
1984 period exclusively, and not to the 1984-1987 period: it indicates 

“, See also note 13. 



330 L. Le~desdorff / Analysis of network dutu using i)zfor)nutjon theory 

Table 8 

Decomposition of the expected information value of the change in journal citation patterns for 

the period 19X1-1987 

Citing Cited 

JPhChUS 

JChemPh 
PhysRevA 

TrahLt 

ChemPhLt 

JChemS 

MolPhys 

InorgCh 

JOrgChem 

ChemPhys 

Tetrahe 

JOrgmetC 

JACS 

14.2 mbits 

47.0 

30.9 

13.8 

9.7 
- 0.4 

- 7.0 

-8.0 

-8.2 

- 11.2 

- 12.1 

- 15.6 

-31.4 

(81.7) 

JPhChUS 

PhysRevA 

MolPhys 

ChemPhLt 

TrahLt 

ChemPhys 

Tetrahe 

JO&hem 

JChemPh 

JChemSc 

InorgCH 
JOrgmetC 

JACS 

47.1 

38.1 

30.0 

15.0 

Il.1 

6.1 

2.1 

1.4 

1.4 

0.4 

- 2.4 

- 14.1 

- 54.5 

(81.7) 

a shift away from randomness in the matrix, i.e., of more pronounced 
specification and differentiation *” among the composing elements of 
the matrices during the 1981-1984 period, which came to a halt in 
later years. 

Where should we look for the sources of these changes? Let us now 
focus on the dynamics along the time axis only, comparing 1981 with 
1987 as a priori and a posteriori respectively. 

11. The dynamics of relations among the 13 journals 

The summation of the row and/or column elements for each journal 
in the matrices containing the As to the overall Iii can straightfor- 
wardly be used as an indicator of the contribution of that journal to 
the overall change of the citation patterns in the matrix, since each Al 
is normalized in terms of the grand sums of the underlying data 
matrices. From Table 7 (above) we know that the overall change over 
the period 1981-1987 is equivalent to a message of 81.7 mbits of 

“’ In the case of equiprobability in the (I priori distribution, I becomes equal to the amount by 
which the entropy is reduced below the original (maximum) value by the a posteriori distribution 

(Theil 1972). 
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Fig. 10. Dynamic analysis of citation patterns of 13 major chemistry journals, 1981-1987. 

Expected information values in mbits. + chemical physics; A organic chemistry; v inorganic 

chemistry: + Phys. Rev. A. 

information. The decomposition of these 81.7 mbits in terms of citing 
and cited patterns for each of the journals is given in Table 8. 

The two values for each journal can also be used as coordinates on 
a map showing the dynamics of the citation patterns (Fig. 10). Zero 
gain (or loss) in terms of expected information content in either 
dimension means that the pattern of that journal has been stable over 
the period under consideration; a positive value means a gain in 
relative contribution to the respective pattern, and a negative value a 
loss. Therefore, journals represented by points in the first quadrant 
gain in importance in both dimensions (“citing” and “cited”), and 
journals represented by points in the third quadrant lose, relative to 
this journal set. Note that these values are multivariate and dynamic, 
in contrast to the “impact factors” (Garfield 1979) and “influence 
weights” (Narin 1976) of journals and other such indicators (Todorov 
and Glanzel 19881, which are time-series points based on static 
network analysis, i.e., computed for each year separately, and subse- 
quently plotted against time. 

I also compared the solutions for factor analysis and multidimen- 
sional scaling of two-dimensional arrays as if one were to cut the cube 
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Fig. 11. MINISSA for 13 major chemistry journals - 1981 tin italics) and 1987 solutions 

superimposed: Dimension 2 plotted against dimension 1. 1981: dhat = 0.1 IO. 1987: dhat = 0.088. 

into slices, and then intrapolate the results. Then, I find stable 
patterns, particularly in the “organic” and “inorganic chemistry” parts 
of the map, and changes only in eigenvalues for factors. As an 
example, Fig. 11 shows the superposition of the multidimensional 
scaling solutions in two dimensions for 1981 (italicized) and 1987: the 
two pictures can be brought almost to coincide by rotation around the 
origin. However, from visual inspection of Fig. 10 it is obvious that the 
major effect in this matrix is the loss of relative contributions, both to 
the cited and the citing pattern, of JACS as a central journal. Note 
that in Fig. 11 the position of JACS is completely stable! 

Further analysis of the matrix of values for Als (see above) teaches 
us that more specialized journals, particularly on the “chemical 
physics” and “physical chemists” part of the set, gain weight in the 
data matrix at the expense of JACS. If we focus on the “organic” and 
““inorganic” subsets only - excluding JACS - then the “inorganic” 
subgroup is “losing” most in relation to this set. However, recall that 
in the multivariate analysis above, the eigenvalue of “inorganic chem- 



L. Leydesdotff /Analysis of network data using information theory 333 

istry” was increasing over the same period. I will return to the 
explanation of this discrepancy later. 

As before, we may omit the diagonal values, if we wish to compare 
the matrices without taking “self-citations” into account (Price 1981; 
Noma 1982), or we may focus on the diagonal elements in relation to 
off-diagonal elements if we want to elaborate on the dynamic analysis 
of cliques as in the previous section. Such analysis of the differences 
between these two matrices teaches us that the “organic chemistry” 
group of journals (without JACS) has gained influence in the matrix 
both as a cohesive clique and as a “being cited” unit, although it has 
been almost neutral with respect to its citing pattern. Additionally, I 
found an increase in all indicators (being cited, citing) for “organic 
chemistry” when compared with “inorganic chemistry” only. 

However, in terms of citing behaviour, the expansion of citations in 
the “chemical physics” and “physics” part of the matrix is quantita- 
tively more important than the relative increase of “organic chemistry” 
in relation to only “inorganic chemistry” and JACS in the other part 
of the matrix. More detailed analysis of this part of the matrix, i.e., the 
interface of chemistry with physics, teaches us that the journals with 
“chemical physics” in their title have lost coherence among them- 
selves (as a clique), and hence have also become more integrated into 
the groups of other “physics” journals. The gains in contribution of 
the latter group to the overall change, both in terms of being cited 
patterns and citing behaviour, have been most important. 2’, 22 

12. Revision of the prediction 

In Table 7 we compared not only 1987 with 1981 data, but also with 
1984 data. In addition to the study of relations between two matrices, 

*’ Note that we could have used the one-dimensional data of the margin totals for subgroups, 

either in the citing or cited dimension, but in that case we would not only have lost the possibility 

of varying over the dimensions in order to investigate cliques, but we would also have lost 

information by reducing the dimensionality of the problem. For example, for 1981-1987, we can 

find in that case only 5.6 mbits of change between 1981-1987 - as against 81.7 mbits using the 

bivariate analysis - but the distribution over each of the journals happens to have the same 

rank-order for each journal, nevertheless. However, the major advantage of the direct approach 

of using the matrices of As for all cells is that we gain a more informative picture by direct 
summation of the contributions of any subset without the need for further assumptions. 

22 I want to note also that the above discussed analysis of citing versus cited patterns (“asymme- 
try”) in terms of information contents of the transforming messages for the rows and columns 

can be developed as a special case in terms of the As in the dynamic analysis, however, only in 

the case of square matrices. 
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we may raise the question of whether, and if so to what extent, the 
prediction of the posterior matrix from the prior matrix is improved or 
worsened by using in-between data to revise the prediction. The 
importance of this technique is also that it gives us the basis for a test 
of whether the in-between data are just to be regarded as a case 
between prior and posterior cases, or as containing additional infor- 
mation which merits separate analysis. This may provide a particularly 
useful tool if one wants to reconstruct a line of actions, as, for 
example, is often the case in science studies (Leydesdorff 1990a). 

In general, if we have a prior distribution (~1, a posterior distribu- 
tion (q), and a third distribution which can be regarded as a revision 
of the prediction (p’), the improvement of the prediction by the 
revision can be expressed as follows: 

+I : P) - qq : P’) = cq log( 4/P) - -%I log( q/p’) 

= z:q log( P’/P> 

This improvement can be positive or negative; in the latter case the 
prediction is worsened. 

I now define as a critical revision the case where the revision is not 
only positive, but where the following inequality also holds: 

Z(q:p)-l(q:p’)>l(p’:p) 

or: 

Z(q : P) > qq : P’) + I( P’ : P) 

i.e., in terms of expected information value, the pathway of the signal 
through the revision is more efficient than the direct transfer of the 
signal from the prior to the posterior event. In this case, one might see 
the revision as an auxiliary transmitter which boosted the signal from 
the original sender: there is no need for the receiver to listen to the 
original sender any more (cf. Leydesdorff 1990al. 

If we apply this reasoning to our “1981” data as prior, and our 
“1987” data as posterior distributions, the “1984” data as a revision of 
the prediction obviously satisfies this inequality. (By using Table 7: 
81.7 is greater than 54.3 + 18.0; and also in the reverse direction: 
62.7 > 38.7 + 18.0.) The in-between year “1984” thus boosts the signal 
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from “1981” to “1987”, and vice versa. In other words, when using 
1984 data in the prediction of 1987 data, the 1981 data are no longer 
relevant. This indicates the well-known Markov property: the future 
behaviour of a system is not determined by its previous history. 
Therefore, it gives us a first indication that the overall development of 
the data set is not just the sum of the development of its components. 

Note that the revision of the prediction is also disaggregatable with 
respect to subsets of the matrix. In some parts of the system, the 
revised data set may give us new information indeed, i.e., the subsys- 
tem would have changed. In other parts, the revisions may also sum to 
a number less than zero, indicating a change which has been compen- 
sated in other parts of the system. 

In our journal-journal citation data, none of AZs for rows and 
columns changed sign for the two periods of 1981- 1984 and 1984- 1987, 
respectively. However, not in all such disaggregated cases were the 
in-between data for 1984 a critical revision of the prediction by the 
1981 data in the sense of the inequality discussed above. Conse- 
quently, we may conclude that the data for the in-between year (1984) 
contains some additional information at the journal level about devel- 
opments between 1981 and 1987, and therefore at that level cannot be 
described as only an in-between observation, but must be explained in 
different terms. 

Here, we begin to envisage the relations between network analysis 
and system dynamic modelling. 

13. Forecasting 

In addition to the dynamic analysis of network data, the use of I as a 
measure of dynamic development makes it possible to make best 
forecasts on the basis of any time series of data, also in the multivari- 
ate case. (In Leydesdorff (1990b), this option with the dynamic mea- 
sure I is discussed in more detail, and in comparison to other 
available statistical techniques like, for example, ARIMA.) 

If we have a set of (for example, yearly) trend data for the period 
from year m to year IZ, the best prediction of the figure for year II + 1 
could be derived from a comparison of the shares for years m + 1,. . . , 
n + 1 in terms of a posteriori probabilities with the shares for years 
m,..., n as a priori probabilities. 
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year + 

I I I I --- T--- I I 1 I 

I Pm+, I P,n+2 I I I ( -_- 

I I I 
-_- 

T--- I I I I I 

/ Qrn+, 
1 1 , Qmc2 j I____;___ I Qn_2 j Q,-, / Qn / Qn+, j 

Remember that the best prediction is the one with the lowest I. 
Since the data for all years are given except for the year y1 + 1, the 
best prediction for Q,, , has to be based on the addition of AZ = 0 to 
the 2 which constitutes the I. 

Al= Q,,+, bdQ,,+,/f’J = 0 

For Q,+, > 0, Al = 0, only if: 

WQn+,/f’J = 0 

(15) 

(16) 

or: 

Q n+l = P, (17) 

From this equation we can derive the value (F) of the variable for the 
year n + 1 as a function of the value of that same indicator in the 
previous years of the series: 23 

” The probabilities of a distribution are defined in terms of frequencies F, as follows: 

P, = F, /X: =,,, F, 

Q,=F,/z-:I=+,,I+,F, 

However, obviously: 

X2,,‘, + I F, = ( X ,n F, ) - F,,, + F,, + I 

Since Q,, + , = P,,: 

From which we can calculate F, + ,. and then Q,, + , also follows. 



L. Leydesdorff /Analysis of network data using information theory 337 

The coefficient is the sum of the time series minus the value for the 
first year of the series divided by the same sum minus the value of the 
last year. The interpretation is simple: with no further information 
(Al = 01, we may assume that the distribution of the time-series data 
remains the same for the next year with the difference of one year 
only. Note that this assumption is much weaker than the assumption 
of linearity (or of a higher-order polynomial relationship) implied in 
regression analysis and time series analysis. Since the measurement is 
non-parametric, we are not required to make any further assumptions 
about the character of the trend beyond the assumption that without 
any additional information, we have no reason to expect change in the 
distribution over the years except for the noted advancement of one 
year only. 

The extension of the univariate forecast to the multivariate one is 
straightforward. Following the arguments presented above, we can use 
the following figures for the multivariate prediction: 

year + 

r I I I ---I--- I I I 

I P,, I P,m+, I Plm+2 I I I IP 
__-I___ 

1 p2,m I P2,m+, I P2:m+2 I I I 

I P,,,_, I P,,, I l,np2 ( 

, ___I___ 
I P&2 I &-I I P,,, I , 

L I I I I ___I___ I I I 
I Pjm I Pjm+l I Pjm+2 I 

I I I 
I I 

I 3 I ’ 1 ’ I I 
I Pjn_2 I Pin_1 I Pjn I 

___I___ ’ I ’ I ‘I 

/ Q,,m+, , IQ I 1 i l,m+2 , ___I___ j Q,,n-2 j Q,,n-, j Ql,n j QI,,+I / 
[Q IQ 2,m+l , I ; : 2,m+2 , ___I___ 

j Q2,n-2 j Q,,n- 1 j Q2,n j Q2,n + I j 

I I I I 
---I--- 

I I I 1 I 

i Qj,m+, i Qj,m+2 i i 1 
___I___ 

1 Qj,n-2 / Qj,n- I i Qj,n / Qj,n+ I ’ 

As above: for Qj,n+, > 0, Al = 0, only if Qj,,+ 1 = Pj,n and therefore: 

&+I Fjn 

&~=+;+,XjFil = J$mSjFij 

However, obviously: 
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Table Y 

Comparison of univariate and multivariate predictions 

a posteriori 

u priori 

82 83 84 85 X6 x7 

81 33.4 115.3 96.8 1h.O 16.1 23.3 

82 19.1 187.2 15.6 17.1 24.3 

83 13.8 32.4 20.7 28.0 

84 8.1 2Y.Y 30.3 

85 14.9 44.5 

86 19.8 

and therefore: 

F 

Grandsum,,,, - Columnsum ,~ + Columnsum. + , 
,,n+ 1 = F,,, * Grandsum mn 

Since the columnn sum for the year n + 1 is a normalization factor 
only, 24 the right-hand factor is a constant, and we may conclude that 
according to this reasoning the best prediction for next year’s distribu- 
tion would always be the current distribution (n). One may formulate 
this alternatively: as a system the data set has no memory of the values 
of individual elements in previous states. (This is also called the 
Markov property in systems theory.) 

However, we can now make two best forecasts: one on the basis of 
the values of individual elements of the system, and another for the 
data set as a system, i.e., on the basis of the last year’s distribution. 2s 
By comparing these forecasts with actual values, we are able to 
develop a basis for a first test in order to distinguish whether or not 
the elements develop as coordinates in a system. 

” The prediction of the value of this sum may, for example, be calculated univariately on the 

basis of the time series for the column sums by using methods from the previous section. 

‘s The Markov property suggests modelling in terms of Markov chains. However, in order to do 
so. we would first have to prove that the Markov chains are also regular. This is not obvious. 

However, this would require a separate study of the network data under discussion. 
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Since three matrices did not seem enough data for such a compari- 
son, I used additionally the corresponding data for all the years in 
between 1981 and 1987. The results are summarized in Table 9. The 
columns represent the a posteriori distributions, the rows the a priori 
ones. The expected information values are noted on the basis of 
univariate predictions. The last figure in each column corresponds to 
the multivariate prediction, since it is based on the last year only. 

It is clear that in none of the cases does the prediction on the basis 
of the univariate time series improve the prediction on the basis of the 
previous year only. Therefore, we may now conclude that the data 
does indeed change over time as a single system. 26 

Note that if we include more previous years in the univariate 
prediction, the factor by which F, must be multiplied in order to 
estimate F, + 1 becomes closer to one, and therefore the proportions 
among the various cells in the predicted distribution for the year y1 + 1 
also become more similar to the ratios in year ~1. This agrees with our 
intuition that long-term variations correspond with systems variations, 
when these are present. 

14. Summary and conclusions 

By using the information theoretical measures, I first addressed the 
question of measuring asymmetry in the matrix, and the respective 
contributions of rows and columns. Then I raised the question of 
whether the obvious presence of structure in the matrix can be 
revealed using these methods. I showed that one can create, firstly, an 
exact dendrogram in which the length of the leaves represents (in bits 
of information) the asymmetrical mutual distances among the cases; 
and secondly, using divisive clustering one can determine the exact 
number of clusters (groups, factors: etc.) if the “in-between group 
uncertainty” HO has a maximum value. 

The analysis of the grouping, which up to this point had addressed 
one dimension of the matrix only, was subsequently generalized to any 

*’ However, from Table 7 we know that the expected information value of the change between 
1984 and 1987 is only 18.0 mbits, whereas we have a value of 19.8 mbits for the change between 

1986 and 1987. Therefore, in this case only (and for 1987 data only), the data for a previous year 

would be a better predictor than those for a last year. 
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Fig. 12. Components in a structural theary of action (Burt 1982: p. 9). 

ACTlON 

grouping in terms of the two dimensions of the matrix, including 
clique analysis as the special case in which one part of the matrix 
(including diadic relations) is analysed in relation to other parts or to 
the remainder of it. I showed that the graph-analytic approach (“cohe- 
sion” or “relational”) and the factor-analytic (“structural equivalence” 
or “positional”) approach can be considered as special cases of a 
general algorithm for grouping in multivariate arrays. 

The next sections of the study addressed the dynamic analysis using 
the corresponding data for 1981 and 1987. ” I showed that the results 
give a view of the data that is completely different from the compari- 
son of results of various forms of multivariate analysis for each year 
separately. 

Although the non-parametric measures of information theory were 
primarily developed for the analysis of qualitative data, their integrat- 
ing power makes it possible in principle to address issues of dynamic 
multivariate systems which cannot easily be analyzed in a single 
coherent theoretical framework using various, more common statisti- 
cal tools. 

15. Relevance for social network analysis 

In his seminal study, Burt (1982: 9) pictured his model as in Fig. 12. 
Note that the arrow from “action” is the only incoming one for 

27 At the time of this analysis (May 1989), 1987 was the latest available year. 
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Fig. 13. A dynamic extension of the structuralist model of Fig. 12; structure conditions action; 

action changes structure. 

“structure”; thus, structure is to be explained in terms of (aggregates 
and patterns of) action. Obviously, with this model one can study only 
the relations between various aggregates of actions, and therefore in 
this theory, network analysis was a special case of multivariate and 
multilevel analysis; but it did not yet touch the core questions concern- 
ing the dynamics of “structure”/“action” contingencies. 

While the loop in Fig. 12 suggests a dynamic feedback, in method- 
ological terms the model is static: it is a loop, and not a spiral! If I 
extend it to a spiral with time as a separate dimension, it takes the 
shape of Fig. 13. However, this is a rather different model: now, 
structure has an additional incoming arrow from structure at a previ- 
ous moment. 

The problem of structure and action in sociology is thus one step 
more fundamental than whether one chooses a positional or a rela- 
tional approach in a static model. In either case, one still has to relate 
the results of the multivariate analysis to a dynamic perspective. It 
goes beyond the scope of this paper to fully elaborate this dynamic 
structure/ action contingency relation (Leydesdorff 1991a and 1991b). 

However, Fig. 13 shows that the underdetermination of action by 
structure can be conceptualized as a static conditional probability 
distribution, while the reproduction and change of structure by action 
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can never be a mere product of (static) aggregation, but must be the 
product of a dynamic process. Structure at t, may enable and con- 
strain action at t, as a static relation, but subsequently that action may 
not only influence later action (at t,) but also structure at t,, etc. 2X 

In summary, the constraints of structure upon action and the effects 
of action upon structure can be expressed as static and dynamic 
relations among conditional probability distributions. These models 
can be analyzed in one framework using the various methods from 
information theory which were introduced in this study. For example, 
with respect to the arrows in Fig. 13 we can raise the following 
questions: 

(1) 

(2) 

The constraining and enabling function of structure (s) - for 
example, reputation - in relation to action (a> - for example, 
citations - at any moment in time, may be described as the static 
conditional relation between the (multivariate) probability distri- 
bution of a and s, H(a) - H(a Is): how much does knowledge 
about the structural conditions reduce our uncertainty of the 
distribution of actor behaviour? (One may wish to include struc- 
ture at previous moments into the analysis by using s,=, _ 1 instead 

of s,=,.l 
Analogously, the effect of (aggregated) action on structure is a 
dynamic conditional probability relation, which can be expressed 
by formulas like Z(s,,,: s,=i) -I(~~,~~~la~,=,,: ~(,=iJa,,=,,). 
Despite the phenomenological complexity, this formula is rather 
easy in its computation. 

At this stage, it seems almost unnecessary to stipulate that every 
relation is again decomposable down to the level of the individual 
case, and that at each level we may apply directly the methodologies 
which were elaborated in previous sections of this article, for example, 
in order to identify clusters and cliques. Additionally, the explicit 
introduction of the time axis is not only methodologically fruitful, but 
also theoretically meaningful. Structure is not just an aggregate of 

28 Of course, one may wish to complicate the analysis by adding more arrows to the scheme, 

such as for example, action at t, having an effect on structure at tl without influencing the 

in-between structure at t2, or action being guided by perceptions of previous structures as 

intermediating variables, etc. 
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action; 29 as visible in Fig. 13, the dynamic conceptualization urges us 
to reformulate their relations as the interaction between two self-ref- 
erential loops (Luhmann 1984; Leydesdorff 1991b). 
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